首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30733篇
  免费   1449篇
  国内免费   2453篇
测绘学   1737篇
大气科学   3327篇
地球物理   6139篇
地质学   14693篇
海洋学   2040篇
天文学   1846篇
综合类   2869篇
自然地理   1984篇
  2024年   24篇
  2023年   113篇
  2022年   316篇
  2021年   361篇
  2020年   349篇
  2019年   302篇
  2018年   5027篇
  2017年   4297篇
  2016年   2898篇
  2015年   544篇
  2014年   482篇
  2013年   399篇
  2012年   1321篇
  2011年   3059篇
  2010年   2391篇
  2009年   2625篇
  2008年   2153篇
  2007年   2620篇
  2006年   305篇
  2005年   392篇
  2004年   578篇
  2003年   607篇
  2002年   451篇
  2001年   234篇
  2000年   260篇
  1999年   333篇
  1998年   317篇
  1997年   283篇
  1996年   238篇
  1995年   244篇
  1994年   217篇
  1993年   180篇
  1992年   153篇
  1991年   93篇
  1990年   91篇
  1989年   77篇
  1988年   50篇
  1987年   38篇
  1986年   24篇
  1985年   26篇
  1984年   25篇
  1983年   17篇
  1982年   18篇
  1981年   38篇
  1980年   31篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1976年   8篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
761.
浮游植物生物量研究 Ⅰ.浮游植物生物量细胞体积转化法   总被引:27,自引:4,他引:27  
在海洋生态动力学研究过程中,采用浮游植物细胞数量来估算浮游植物丰度可以说是不够精确的,因为不同种的浮游植物细胞大小差别很大,只有浮游植物的生物量才能正确反映海洋生态系中的能量分布.本文以拟合浮游植物细胞相似体积方法,基于胶州湾生态动力学研究所获资料,计算了87种中国近海常见浮游植物的细胞体积、鲜重、碳含量、氮含量.  相似文献   
762.
SeaWiFS探测1997年闽南赤潮模型研究   总被引:7,自引:0,他引:7  
在1997年秋季厦门附近海域微吓灌赤潮水体现场反射光谱测量的基础上,根据对SesWiFS可见光范围内各波段离水辐射率变化的分析,提出3、4、5波段离水辐射率差值(Lw5+Lw3-2Lw4)〉C模型,用它计算了1997年11月和12月 潮时相的SeaWiFS图象,结果和赤潮发生的实际状况一致。  相似文献   
763.
ECOM模式在丁字湾的应用   总被引:3,自引:3,他引:3  
应用河口、陆架和海洋模式 (ECOM模型 ) ,引入干湿网格法模拟潮滩涨落的改进 ,并建立丁字湾及近岸海域的三维变动边界潮流模型。该模型考虑了湾口拦门沙、湾内水道和人工围海等地形特点。计算结果与实测值比较符合良好 ,较好地刻画出丁字湾 M2 分潮潮流场的时空分布特点。  相似文献   
764.
The Magellan seamounts began forming as large submarine shield volcanoes south of the equator during the Cretaceous. These volcanoes formed as a cluster on the small Pacific plate in a period when tectonic stress was absent. Thermal subsidence of the seafloor led to sinking of these volcanoes and the formation of guyots as the seamounts crossed the equatorial South Pacific (10–0°S) sequentially and ocean surface temperatures became too high for calcareous organisms to survive. Guyot formation was completed between about 59 and 45 Ma and the guyots became phosphatized at about 39–34 and 27–21 Ma. Ferromanganese crusts began formation as proto-crusts on the seamounts and guyots of the Magellan Seamount cluster towards the end of the Cretaceous up to 55 Ma after the formation of the seamounts themselves. The chemical composition of these crusts evolved over time in a series of steps in response to changes in global climate and ocean circulation. The great thickness of these crusts (up to 15–20 cm) reflects their very long period of growth. The high Co contents of the outer parts of the crusts are a consequence of the increasing deep circulation of the ocean and the resulting deepening of the oxygen minimum zone with time. Growth of the Co-rich Mn crusts in the Magellan Seamount cluster can be considered to be the culmination of a long journey through time.  相似文献   
765.
The upper layer (above 140 m depth) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB) with 15 attached thermistors during July 28–August 7, 2005. The data were collected every 10 min at 1, 3, 5, 10, 15, and 20 m using the CMB sensors, and every 15 sec at 15 different depths between 25 m and 140 m. Internal waves and solitons were identified from the time-depth plot of the temperature field. Without the internal waves and solitons, the power spectra, structure functions, and singular measures (representing the intermittency) of temperature field satisfy the power law with multi-scale characteristics at all depths. The internal waves do not change the basic characteristics of the multifractal structure. However, the internal solitons change the power exponent of the power spectra drastically, especially in the low wave number domain; they also break down the power law of the structure function and increase the intermittency parameter. The physical mechanisms causing these different effects need to be explored further.  相似文献   
766.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
767.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   
768.
The biochemical effects of a cold-core eddy that was shed from the Kuroshio Current at the Luzon Strait bordering the South China Sea (SCS) were studied in late spring, a relatively unproductive season in the SCS. The extent of the eddy was determined by time-series images of SeaWiFS ocean color, AVHRR sea surface temperature, and TOPEX/Jason-1 sea surface height anomaly. Nutrient budgets, nitrate-based new production, primary production, and phytoplankton assemblages were compared between the eddy and its surrounding Kuroshio and SCS waters. The enhanced productivity in the eddy was comparable to wintertime productivity in the SCS basin, which is supported by upwelled subsurface nitrate under the prevailing Northeastern Monsoon. There were more Synechococcus, pico-eucaryotes, and diatoms, but less Trichodesmium in the surface water inside the eddy than outside. Prochlorococcus and Richelia intracellularis showed no spatial differences. Water column-integrated primary production (IPP) inside the eddy was 2–3 times that outside the eddy in the SCS (1.09 vs. 0.59 g C m−2d−1), as was nitrate-based new production (INP) (0.67 vs. 0.25 g C m−2d−1). INP in the eddy was 6 times that in the Kuroshio (0.12 g C m−2d−1). IPP and INP in the eddy were higher than the maximum production values ever measured in the SCS basin. Surface chlorophyll a concentration (0.40 mg m−3) in the eddy equaled the maximum concentration registered for the SCS basin and was higher than the wintertime average (0.29 ± 0.04 mg m−3). INP was 3.5 times as great and IPP was doubled in the eddy compared to the wintertime SCS basin. As cold core eddies form intermittently all year round as the Kuroshio invades the SCS, their effects on phytoplankton productivity and assemblages are likely to have important influences on the biogeochemical cycle of the region.  相似文献   
769.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
770.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号