首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5207篇
  免费   543篇
  国内免费   160篇
测绘学   237篇
大气科学   587篇
地球物理   1935篇
地质学   2116篇
海洋学   268篇
天文学   336篇
综合类   189篇
自然地理   242篇
  2023年   2篇
  2022年   9篇
  2021年   18篇
  2020年   8篇
  2019年   12篇
  2018年   435篇
  2017年   374篇
  2016年   250篇
  2015年   150篇
  2014年   112篇
  2013年   116篇
  2012年   647篇
  2011年   421篇
  2010年   115篇
  2009年   130篇
  2008年   117篇
  2007年   110篇
  2006年   124篇
  2005年   830篇
  2004年   871篇
  2003年   651篇
  2002年   174篇
  2001年   69篇
  2000年   43篇
  1999年   14篇
  1998年   5篇
  1997年   17篇
  1996年   10篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1980年   3篇
  1976年   3篇
  1975年   4篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1962年   1篇
  1961年   2篇
  1959年   2篇
  1956年   1篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1925年   1篇
排序方式: 共有5910条查询结果,搜索用时 328 毫秒
91.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   
92.
Climate is one factor that determines the potential range of malaria. As such, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission was based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using 16 projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas with low precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.  相似文献   
93.
Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model replacing the traditional Jarvis scheme for estimating the canopy resistance and transpiration. Using 18-month simulations from the High Resolution Land Data Assimilation System (HRLDAS), the impact of the photosynthesis-based approach on the simulated canopy resistance, surface heat fluxes, soil moisture, and soil temperature over different vegetation types is evaluated using data from the Atmospheric Radiation Measurement (ARM) site, Oklahoma Mesonet, 2002 International H2O Project (IHOP_2002), and three Ameriflux sites. Incorporation of GEM into Noah improves the surface energy fluxes as well as the associated diurnal cycle of soil moisture and soil temperature during both wet and dry periods. An analysis of midday, average canopy resistance shows similar day-to-day trends in the model fields as seen in observed patterns. Bias and standard deviation analyses for soil temperature and surface fluxes show that GEM responds somewhat better than the Jarvis scheme, mainly because the Jarvis approach relies on a parametrised minimum canopy resistance and meteorological variables such as air temperature and incident radiation. The analyses suggest that adding a photosynthesis-based transpiration scheme such as GEM improves the ability of the land-data assimilation system to simulate evaporation and transpiration under a range of soil and vegetation conditions.  相似文献   
94.
We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.  相似文献   
95.
The study reports estimates of above ground phytomass carbon pools in Indian forests for 1992 and 2002 using two different methodologies. The first estimate was derived from remote sensing based forest area and crown density estimates, and growing stock data for 1992 and 2002 and the estimated pool size was in the range 2,626–3,071 Tg C (41 to 48 Mg C ha???1) and 2,660–3,180 Tg C (39 to 47 Mg C ha???1) for 1992 and 2002, respectively. The second methodology followed IPCC 2006 guidelines and using an initial 1992 pool of carbon, the carbon pool for 2002 was estimated to be in the range of 2,668–3,112 Tg C (39 to 46 Mg C ha???1), accounting for biomass increment and removals for the period concerned. The estimated total biomass increment was about 458 Tg over the period 1992–2002. Removals from forests include mainly timber and fuel wood, whereby the latter includes large uncertainty as reported extraction is lower than actual consumption. For the purpose of this study, the annual extraction values of 23 million m3 for timber and 126 million m3 for fuel wood were used. Out of the total area, 10 million ha are plantation forests with an average productivity (3.2 Mg ha???1 year???1) that is higher than natural forests, a correction of 408 Tg C for the 10 year period was incorporated in total estimated phytomass carbon pool of Indian forests. This results in an estimate for the net sink of 4 Tg C year???1. Both approaches indicate Indian forests to be sequestering carbon and both the estimates are in agreement with recent studies. A major uncertainty in Indian phytomass carbon pool dynamics is associated with trees outside forests and with soil organic carbon dynamics. Using recent remote-sensing based estimates of tree cover and growing stock outside forests, the estimated phytomass carbon pool for trees outside forests for the year 2002, is 934 Tg C with a national average tree carbon density of 4 Mg C ha???1 in non-forest area, in contrast to an average density of 43 Mg C ha???1 in forests. Future studies will have to consider dynamics in both trees outside forests and soil for total terrestrial carbon dynamics.  相似文献   
96.
We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space–time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space–time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor’s hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.  相似文献   
97.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   
98.
The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation characteristics that were affected by land surface vegetation coverage as well as by soil physical properties.  相似文献   
99.
A set of micro pulse lidar(MPL)systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011.Three typical particulate pollution events(e.g.,haze)were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer(PBL)during these pollution episodes.The aerosol vertical extinction coefficient(VEC)at any given measured altitude was prominently larger during haze periods than that before or after the associated event.Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering,leading to different aerosol vertical distribution structures.Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions.Several peaks in aerosol VECs were found at altitudes above 1 km during the dust-and bioburning-influenced haze events.Aerosol VECs decreased with increasing altitude during the local-polluted haze event,with a single maximum in the surface atmosphere.PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events;subsequently,PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages.The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.  相似文献   
100.
There are about 46298 glaciers in the High Asiain China, the total glacial area is about 59406 km , andtotal glacial volume about 5590 km3. These glaciersmainly concentrate around the Himalayas Mountains,Nyainqentanglha Mountains, Kunlun Mountains,Karakoram Mountains and Tianshan Mountains. Theglaciers in the Tibetan Plateau are the major compo-nent of the glaciers in the High Asia in China. Theseglaciers extend north to the arid and desert regions,and become the main water resource in …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号