The runoff and sediment load of the Loess Plateau have changed significantly due to the implementation of soil and water conservation measures since the 1970s. However, the effects of soil and water conservation measures on hydrological extremes have rarely been considered. In this study, we investigated the variations in hydrological extremes and flood processes during different periods in the Yanhe River Basin (a tributary of the Loess Plateau) based on the daily mean runoff and 117 flood event data from 1956 to 2013. The study periods were divided into reference period (1956–1969), engineering measures period (1970–1995), and biological control measures period (1996–2013) according to the change points of the annual streamflow and the actual human activity in the basin. The results of the hydrological high extremes (HF1max, HF3max, HF7max) exhibit a decreasing trend (P?<?0.01), whereas the hydrological low extremes (HBF1min, HBF3min, HBF7min) show an increasing trend during 1956–2013. Compared with the hydrological extremes during the reference period, the hydrological high extremes increased during the engineering measures period at low (<?15%) and high frequency (>?80%), whereas decreased during the biological control measures period at almost all frequencies. The hydrological low extremes generally increased during both the engineering measures and biological control measures periods, particularly during the latter period. At the flood event scale, most flood event indices in connection with the runoff and sediment during the engineering measures period were significantly higher than those during the biological control measures period. The above results indicate that the ability to withstand hydrological extremes for the biological control measures was greater than that for the engineering measures in the studied basin. This work reveals the effects of different soil and water conservation measures on hydrological extremes in a typical basin of the Loess Plateau and hence can provide a useful reference for regional soil erosion control and disaster prevention policy-making.
To accurately evaluate ecological risks trigged by groundwater exploitation, it must be clarified the relationship between vegetation and groundwater. Based on remote sensing data sets MOD13Q1, groundwater table depth (WTD) and total dissolved solids (TDS), the relationship between groundwater and natural vegetation was analyzed statistically in the main plain areas of Qaidam Basin. The results indicate that natural vegetation is groundwater-dependent in areas where WTD is less than 5.5 m and TDS is less than 7.5 g/L. Aquatic vegetation, hygrophytic vegetation and hygrophytic saline-alkali tolerant vegetation are mainly distributed in areas with WTD <1.1 m. Salt-tolerant and mesophytic vegetation mainly occur in areas with WTD of 1.4-3.5 m, while the xerophytic vegetation isprimarily present in areas where WTD ranges from 1.4 m to 5.5 m. Natural vegetation does not necessarily depend on groundwater in areas with WTD >5.5 m. For natural vegetation, the most suitable water TDS is less than 1.5 g/L, the moderately suitable TDS is 1.5-5.0 g/L, the basically suitable TDS is 5.0-7.5 g/L, and the unsuitable TDS is more than 7.5 g/L. 相似文献
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au (Sb) deposit and Au deposits at Zhaojialing, Wuxi, and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au (Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods (144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au (Cu) in the process. Integrated with the results of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui. 相似文献
In organic-rich gas shales, clay minerals and organic matter (OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generation, storage, and seepage of shale gas, we examined the effects of clay minerals and OM on nanoscale pore distribution characteristics in Lower Paleozoic shale gas reservoirs. Using the Niutitang and Longmaxi shales as examples, we determined the effects of clay minerals and OM on pores through sedimentation experiments. Field emission–scanning electron microscopy combined with low-pressure N2 adsorption of the samples before and after sedimentation showed significant differences in pore location and pore size distribution between the Niutitang and Longmaxi shales. Nanoscale pores mostly existed in OM in the Longmaxi shale and in clay minerals or OM–clay composites in the Niutitang shale. The distribution differences were attributed largely to variability in thermal evolution and tectonic development and might account for the difference in gas-bearing capacity between the Niutitang and Longmaxi reservoirs. In the nanoscale range, mesopores accounted for 61–76% of total nanoscale pore volume. Considerably developed nanoscale pores in OM were distributed in a broad size range in the Longmaxi shale, which led to good pore connectivity and gas production. Numerous narrow pores (i.e., pores?<?20 nm) in OM–clay composites were found in the Niutitang shale, and might account for this shale’s poor pore connectivity and low gas production efficiency. Enhancing the connectivity of the mesopores (especially pores?<?20 nm and those developed in OM–clay composites) might be the key to improving development of the Niutitang shale. The findings provide new insight into the formation and evolutionary mechanism of nanoscale pores developed in OM and clay minerals. 相似文献
A peraluminous granite belt occurs along the connecting zone between the Turpan-Hami Precambrian block and the Upper Paleozoic island arc belt. Muscovite granite and twomica granite are the essential lithological components of that belt. All the potassium feldspars in these granites are microcline. Heavy minerals are dominated by magnetite. SiO2 contents of these granites are greater than 73% with most of the A/NKC values greater than 1.1, normative corundum values greater than 1. Plots of CIPW norms in the (Al-K-Na)-Ca-(Fe2++ Mg) diagram are mostly situated in the plagioclase-cordierite-muscovite region. The rocks are characterized by very low contents of minor elements and ΣREE with strong Eu depletion, δ18O values between 6.6‰ and 7.0‰, Rb-Sr isochron age of 260.2 ± 6.2 Ma and an initial87Sr/86 Sr ratio of 0.7052. These granites might have been produced by partial melting of moderately acidic volcanites and low-maturity sediments in the basement sequences and could be genetically connected with the southward A-type subduction of the Turpan-Hami block following the closure of the Middle Carboniferous back-arc basin. 相似文献