Rocks consist of crystal grains separated by grain boundaries that impact the bulk rock properties. Recent studies on metals and ceramics showed that the grain boundary plane orientation is more significant for grain boundary properties than other characteristics such as the sigma value or disorientation (in the Earth’s science community more frequently termed misorientation). We determined the grain boundary character distribution (GBCD) of synthetic and natural polycrystalline olivine, the most abundant mineral of Earth’s upper mantle. We show that grain boundaries of olivine preferentially contain low index planes, in agreement with recent findings on other oxides (e.g. MgO, TiO2, Al2O3 etc.). Furthermore, we find evidence for a preferred orientation relationship of 90° disorientations about the [001] direction forming tilt and twist grain boundaries, as well as a preference for the 60° disorientation about the [100] axis. Our data indicate that the GBCD, which is an intrinsic property of any mineral aggregate, is fundamental for understanding and predicting grain boundary related processes. 相似文献
Abstract This study reports on the implementation of an interactive mixed‐layer/thermodynamic‐ice lake model coupled with the Canadian Regional Climate Model (CRCM). For this application the CRCM, which uses a grid mesh of 45 km on a polar stereographic projection, 10 vertical levels, and a timestep of 15 min, is nested with the second generation Canadian General Circulation Model (GCM) simulated output. A numerical simulation of the climate of eastern North America, including the Laurentian Great Lakes, is then performed in order to evaluate the coupled model. The lakes are represented by a “mixed layer” model to simulate the evolution of the surface water temperature, and a thermodynamic ice model to simulate evolution of the ice cover. The mixed‐layer depth is allowed to vary spatially. Lake‐ice leads are parametrized as a function of ice thickness based on observations. Results from a 5‐year integration show that the coupled CRCM/lake model is capable of simulating the seasonal evolution of surface temperature and ice cover in the Great Lakes. When compared with lake climatology, the simulated mean surface water temperature agrees within 0.12°C on average. The seasonal evolution of the lake‐ice cover is realistic but the model tends to underestimate the monthly mean ice concentration on average. The simulated winter lake‐induced precipitation is also shown, and snow accumulation patterns on downwind shores of the lakes are found to be realistic when compared with observations. 相似文献
This study investigated proton adsorption to an extracellular polymeric substance (EPS) producing bacterial strain, Bacillus licheniformis S-86, in order to characterise and quantify the contribution made by EPS to cell surface reactivity. Potentiometric titrations were conducted using both untreated cells and cells from which the EPS layer had been extracted. Surface-complexation modelling indicated the presence of four different functional groups in both untreated and EPS-free cells. These sites are assigned to phosphodiester, (pKa 3.3–3.4), carboxylic (pKa 5.3–5.4), phosphoryl/ (pKa 7.4–7.5) and hydroxyl/amine (pKa 9.9–10.1) type groups. The pKa values for the four groups were very similar for untreated and EPS-free cells, indicating no qualitative difference in composition, but site concentrations in the untreated cells were statistically found to be significantly higher than those in the EPS-free cells for the pKa 3.3–3.4 and pKa 9.9–10.1 sites. Infrared analysis provided supporting evidence that site 2 is carboxylic in nature but did not reveal any difference in IR absorption between the native and EPS-free cells. Dissolved organic carbon (DOC) analysis conducted during this study indicated that DOC release by cells is significant, and that the EPS layer is the major contributor. 相似文献
This study identifies isotope signatures associated with autotrophic and heterotrophic microbial communities that may provide a means to determine carbon cycling relationships in situ for acid mine drainage (AMD) sites. Stable carbon isotope ratios (δ13C) of carbon sources, bulk cells, and membrane phospholipids (PLFA) were measured for autotrophic and heterotrophic microbial enrichment cultures from a mine tailings impoundment in northern Ontario, Canada, and for pure strains of the sulfur oxidizing bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The autotrophic enrichments had indistinguishable PLFA distributions from the pure cultures, and the PLFA cyc-C19:0 was determined to be a unique biomarker in this system for these sulfur oxidizing bacteria. The PLFA distributions produced by the heterotrophic enrichments were distinct from the autotrophic distributions and the C18:2 PLFA was identified as a biomarker for these heterotrophic enrichments. Genetic analysis (16S, 18S rRNA) of the heterotrophic cultures indicated that these communities were primarily composed of Acremonium fungi.Stable carbon isotope analysis revealed that bulk cellular material in all autotrophic cultures was depleted in δ13C by 5.6–10.9‰ relative to their atmospheric CO2 derived carbon source, suggesting that inorganic carbon fixation in these cultures is carbon limited. Individual PLFA from these autotrophs were further depleted by 8.2–14.6‰ compared to the bulk cell δ13C, which are among the largest biosynthetic isotope fractionation factors between bulk cell and PLFA reported in the literature. In contrast, the heterotrophic bulk cells were not significantly fractionated in δ13C relative to their carbon source and heterotrophic PLFA ranged from 3‰ enriched to 4‰ depleted relative to the isotopic composition of their total biomass. These distinct PLFA biomarkers and isotopic fractionations associated with autotrophic and heterotrophic activity in this laboratory study provide potential biomarkers for delineating autotrophic and heterotrophic carbon cycling in AMD environments. 相似文献
For any specific wind speed, waves grow in period, height and length as a function of the wind duration and fetch until maximum values are reached, at which point the waves are considered to be fully developed. Although equations and nomograms exist to predict the parameters of developing waves for shorter fetch or duration conditions at different wind speeds, these either do not incorporate important variables such as the air and water temperature, or do not consider the combined effect of fetch and duration. Here, the wind conditions required for a fully developed sea are calculated from maximum wave heights as determined from the wind speed, together with a published growth law based on the friction velocity. This allows the parameters of developing waves to be estimated for any combination of wind velocity, fetch and duration, while also taking account of atmospheric conditions and water properties. 相似文献
Data are presented indicating the complexity and highly variable response of beaches to cold front passages along the northern Gulf of Mexico, in addition to the impacts of tropical cyclones and winter storms. Within the past decade, an increase in the frequency of tropical storms and hurricanes impacting the northern Gulf has dramatically altered the long-term equilibrium of a large portion of this coast. A time series of net sediment flux for subaerial and nearshore environments has been established for a section of this coast in Florida, and to a lesser extent, Mississippi. The data incorporate the morphological signature of six tropical storms/hurricanes and more than 200 frontal passages.
Data indicate that (1) barrier islands can conserve mass during catastrophic hurricanes (e.g., Hurricane Opal, a strong category 4 hurricane near landfall); (2) less severe hurricanes and tropical storms can promote rapid dune aggradation and can contribute sediment to the entire barrier system; (3) cold fronts play a critical role in the poststorm adjustment of the barrier by deflating the subaerial portion of the overwash terrace and eroding its marginal lobe along the bayside beach through locally generated, high frequency, steep waves; and (4) barrier systems along the northern Gulf do not necessarily enter an immediate poststorm recovery phase, although nested in sediment-rich nearshore environments. While high wave energy conditions associated with cold fronts play an integral role in the evolution and maintenance of barriers along the northern Gulf, these events are more effective in reworking sediment after the occurrence of extreme events such as hurricanes. This relationship is even more apparent during the clustering of tropical cyclones.
It is anticipated that these findings will have important implications for the longer term evolution of barrier systems in midlatitude, microtidal settings where the clustering of storms is apparent, and winter storms are significant in intensity and frequency along the coast. 相似文献
Ether derivatives of dihydroxy alcohols, which are formed from ethylene or propylene, comprise an important group of groundwater contaminants known as glycol ethers. Compounds in this group are used as solvents, cleaning agents, and emulsifiers in many chemical products and manufacturing operations. Glycol ethers have been associated with a variety of toxic effects, and some compounds in the group are relatively potent teratogens. The limited information available suggests that glycol ethers are contaminants in groundwater, especially in anaerobic plumes emanating from disposal of mixed industrial and household waste. Most methods used to analyze groundwater samples cannot adequately detect 7g/ (ppb) concentrations of glycol ethers, and the existing methods perform worst for the most widely used and toxic species. A new method capable of analyzing 7g/ concentrations of glycol ethers was recently developed, and its use is recommended for groundwater samples where glycol ethers are likely to be present. Résumé. Les éthers glycol, polluants des eaux souterraines. Les dérivés d'éther de dihydroxy-alcool, formés à partir de l'éthylène ou du propylène, constituent un important groupe de polluants des eaux souterraines connus sous le nom d'éthers glycol. Les composés de ce groupe sont utilisés comme solvants, comme agents de nettoyage et comme émulsifiants dans de nombreux produits chimiques et dans de nombreux processus de fabrication. Des effets toxiques variés ont été attribués aux éthers glycol et certains des composés sont des agents tératogènes relativement puissants. Les données disponibles, qui sont limitées, indiquent que les éthers glycol sont des polluants communs dans les eaux souterraines, particulièrement dans les panaches anaéorobies émis par les décharges mixtes de déchets industriels et domestiques. La plupart des méthodes d'analyse d'échantillons d'eau souterraine ne sont pas capables de détecter convenablement des concentrations en éthers glycol de l'ordre du 7g/l (ppb); les méthodes actuelles sont médiocres pour doser les espèces toxiques les plus courantes. Une nouvelle méthode permettant de doser des concentrations en éthers glycol de l'ordre du 7 g/l a été récemment mise au point; son utilisation est préconisée pour les échantillons d'eau souterraine contenant des éthers glycol. 相似文献
The fair and effective governance of freshwater is an increasingly prominent issue in New Zealand. Emerging from a complex of cultural, economic and biophysical narratives, freshwater geographies are multiple, varied and increasingly acknowledged as worthy of interdisciplinary scrutiny. In this commentary, we reflect on a series of generative spaces that we – as group of postgraduate geographers (plus supporting staff) – created to engage with the multiplicity of freshwater meanings both within and beyond the academy. Through this evolving epistemic‐political project, we significantly reframed our own understandings about what freshwater ‘is’ and how it ought to be governed. By pursuing a deeper understanding of how the world gets made, we expand our ability to know and make it differently. 相似文献
Summary. An assessment is made of the bias of fitting constrained layered-earth models to transient electromagnetic data obtained over 3-D structures. In this assessment we use the central-loop configuration and show that accurate estimates of the depth of burial of 3-D structures can be obtained with layered-earth model fitting. However, layered-earth interpretations are not reliable for estimating depth extents and resistivities of 3-D structures. When layered earths are used for interpretation, it is advantageous in some cases to use data based on the magnetic field instead of the voltage. A magnetic-field definition of apparent resistivity, in contrast to a definition based on the voltage, eliminates apparent-resistivity overshoots and undershoots in the data. A resistivity undershoot in the data can produce an extraneous and misleading layer in an interpretation of a 3-D resistive structure. Due to 3-D effects, apparent-resistivity soundings (magnetic field and voltage) may rise so steeply at late times that it may not be possible to fit a sounding to a reasonable layered-earth model. Truncating such a sounding, over a buried conductor, allows for a reasonable layered-earth fit and an accurate estimate of the depth to the conductor. However, the resistivity of the conductor is overestimated. Measurements of the horizontal field in the central-loop configuration can map 3-D structures, provided the sensor is located accurately at the centre of the transmitting loop. Horizontal-field calculations show that the transients peak on the flanks of a 3-D structure, but are depressed over the structure's centre. Weak transient responses flanked by two large transient responses, which are opposite in sign, locate the structure. The sign reversal is caused by a corresponding reversal in the currents that are channelled through or deflected away from conductive or resistive structures, respectively. 相似文献
The oxidation kinetics of trithionate (S3O62-
) and tetrathionate (S4O
62-
) with hydroxyl radicals (OH*) have been investigated in systems analogous to acid mine drainage (AMD) environments. The discovery of hydroxyl radical
(OH*) formation on pyrite surfaces (Borda et al., 2003) suggests hydroxyl radicals may affect the oxidation kinetics of intermediate
sulfur species such as tetrathionate. Cyclic voltammetry experiments in acidic solutions indicate that the reaction of S4O
62-
with OH* goes through an unknown intermediate, tentatively assigned as S3O
4n-
. An outer-sphere electron transfer mechanism for the reaction of S4O
62-
with OH* to form S3O
4n-
is proposed based on experimental results. Oxidation rates for trithionate and tetrathionate in the presence of Fenton's
reagent (which forms hydroxyl radicals) are too fast to be directly measured using UV-Vis spectrophotometry, electrochemical,
or stop-flow spectrophotometry methods. Competitive reaction kinetics within the context of the Haber—Weiss mechanism suggests
that the rate constant for the oxidation of trithionate and tetrathionate with OH* is in excess of 108 M-1 sec-1. 相似文献