首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   18篇
  国内免费   4篇
测绘学   9篇
大气科学   31篇
地球物理   117篇
地质学   96篇
海洋学   14篇
天文学   33篇
综合类   1篇
自然地理   32篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   11篇
  2011年   16篇
  2010年   18篇
  2009年   17篇
  2008年   15篇
  2007年   16篇
  2006年   18篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
71.
Human actions have altered the structure and function of coastal ecosystems worldwide. In many locations, the overall portfolio of goods, cultural amenities, and supporting services provided by the marine environment has deteriorated. Ecosystem-based management (EBM) offers significant promise for addressing these issues because it is a comprehensive and integrated approach designed to reconcile conflicts and trade-offs among users of marine resources. A key step in the implementation of EBM is the establishment of target reference levels, or desired states, for indicators that reflect the status of the ecosystem. This paper reviews five approaches, borrowed from a variety of disciplines, to establish target reference levels for EBM. The approaches include the use of existing reference levels, reference directions, and reference levels based on nonlinear functional relationships, baselines, or social norms. Each approach is particularly suitable for EBM because it can be used alone or in combination with others to contextualize status for a diverse suite of ecosystem goals influenced by a wide variety of human activities. Perhaps most importantly, these approaches offer a prospectus for moving forward with EBM by using readily available information, motivating existing scientific capacity, and addressing trade-offs implicit to the setting of targets. This last point is articulated via examples of how each type of reference level might be applied in Puget Sound, WA, USA, where the efforts of scientists, managers, and policy makers have aligned recently in the interest of EBM implementation.  相似文献   
72.
The structural geometry, kinematics and density structure along the rear of the offshore Taiwan accretionary prism were studied using seismic reflection profiling and gravity modeling. Deformation between the offshore prism and forearc basin at the point of incipient collision, and southward into the region of subduction, has been interpreted as a tectonic wedge, similar to those observed along the front of mountain ranges. This tectonic wedge is bounded by an east-dipping roof thrust and a blind, west-dipping floor thrust. An east-dipping sequence of forearc-basin strata in the hanging wall of the roof thrust reaches a thickness in excess of 4 km near the tip of the interpreted tectonic wedge. Section restoration of the roof sequence yields an estimate of 4 km of shortening, which is small compared with that inferred in the collision area to the north, based on the variation in distance between the apex of the prism and the island arc.Previous studies propose that either high-angle normal faulting or backfolding has exhumed the metamorphic rocks along the eastern flank of the Central Range in the collision zone on land. To better constrain the initial crustal configuration, we tested 350 crustal models to fit the free-air gravity anomaly data in the offshore region to study the density structure along the rear of the accretionary prism in the subduction and initial collision zones before the structures become more complex in the collision zone on land. The gravity anomaly, observed in the region of subduction (20.2°N), can be modeled with the arc basement forming a trenchward-dipping backstop that is overlain by materials with densities in the range of sedimentary rocks. Near the point of incipient collision (20.9°N), however, the free-air gravity anomaly over the rear of the prism is approximately 40 mgal higher, compared with the region of subduction, and requires a significant component of high density crustal rocks within the tectonic wedge. These results suggest that the forearc basement may be deformed along the rear of the prism, associated with the onset of collision, but not in the subduction region further to the south.  相似文献   
73.
This paper defines a new scoring rule, namely relative model score (RMS), for evaluating ensemble simulations of environmental models. RMS implicitly incorporates the measures of ensemble mean accuracy, prediction interval precision, and prediction interval reliability for evaluating the overall model predictive performance. RMS is numerically evaluated from the probability density functions of ensemble simulations given by individual models or several models via model averaging. We demonstrate the advantages of using RMS through an example of soil respiration modeling. The example considers two alternative models with different fidelity, and for each model Bayesian inverse modeling is conducted using two different likelihood functions. This gives four single-model ensembles of model simulations. For each likelihood function, Bayesian model averaging is applied to the ensemble simulations of the two models, resulting in two multi-model prediction ensembles. Predictive performance for these ensembles is evaluated using various scoring rules. Results show that RMS outperforms the commonly used scoring rules of log-score, pseudo Bayes factor based on Bayesian model evidence (BME), and continuous ranked probability score (CRPS). RMS avoids the problem of rounding error specific to log-score. Being applicable to any likelihood functions, RMS has broader applicability than BME that is only applicable to the same likelihood function of multiple models. By directly considering the relative score of candidate models at each cross-validation datum, RMS results in more plausible model ranking than CRPS. Therefore, RMS is considered as a robust scoring rule for evaluating predictive performance of single-model and multi-model prediction ensembles.  相似文献   
74.
Greg Ringer 《GeoJournal》1997,41(3):223-232
Tourism is increasingly promoted worldwide by public and private agencies as a means of achieving sustainable community development. Rare are the economic windfalls that come without social costs, however, and marketing rural communities as tourist 'products' inevitably forces upon their residents a social transfiguration. Yet, concerns about local places have largely been marginalized in the regionalization and commodification of tourist spaces. As a result, important questions remain unanswered. In response, this study uses the cognitive images of visitors and residents of the twin Alaska 'ghost' towns of Kennicott and McCarthy to describe the evolving landscape of tourism in a protected wilderness community. Specifically, it poses two questions. First, how might disparate perceptions of the tourism landscape serve to define the boundaries of 'place' experience for those who live in or visit Kennicott-McCarthy? Second, can this geographic perspective encourage a proactive planning process more cognizant of the effects on – and responsive to the concerns of – the destination community? A preliminary analysis of the results is presented with a focus on tourism as both agent and process in the structure, identity, and meaning of local places, embedded within larger regions and economies.  相似文献   
75.
Setting limit on groundwater extractions is important to ensure sustainable groundwater management. Lack of extraction data can affect interpretations of historical pressure changes, predictions of future impacts, accuracy of groundwater model calibration, and identification of sustainable management options. Yet, many groundwater extractions are unmetered. Therefore, there is a need for models that estimate extraction rates and quantify model outputs uncertainties arising due to a lack of data. This paper develops such a model within the Generalized Linear Modeling (GLM) framework, using a case study of stock and domestic (SD) extractions in the Surat Cumulative Management Area, a predominantly cattle farming region in eastern Australia. Various types of extraction observations were used, ranging from metering to analytically-derived estimates. GLMs were developed and applied to estimate the property-level extraction amounts, where observation types were weighted by perceived relative accuracy, and well usage status. The primary variables found to affect property-level extraction rates were: yearly average temperature and rainfall, pasture, property area, and number of active wells; while variables most affecting well usage were well water electrical conductivity, spatial coordinates, and well age. Results were compared with analytical estimates of property-level extraction, illustrating uncertainties and potential biases across 20 hydrogeological units. Spatial patterns of mean extraction rates (and standard deviations) are presented. It is concluded that GLMs are well suited to the problem of extraction rate estimation and uncertainty analysis, and are ideal when model verification is supported by measurement of a random sample of properties.  相似文献   
76.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   
77.
78.
New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg cm−2 kyr−1, respectively. Average Ir/3He and Ir/xs230Thinitial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Thinitial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.  相似文献   
79.
Soil‐mantled pole‐facing hillslopes on Earth tend to be steeper, wetter, and have more vegetation cover compared with adjacent equator‐facing hillslopes. These and other slope aspect controls are often the consequence of feedbacks among hydrologic, ecologic, pedogenic, and geomorphic processes triggered by spatial variations in mean annual insolation. In this paper we review the state of knowledge on slope aspect controls of Critical Zone (CZ) processes using the latitudinal and elevational dependence of topographic asymmetry as a motivating observation. At relatively low latitudes and elevations, pole‐facing hillslopes tend to be steeper. At higher latitudes and elevations this pattern reverses. We reproduce this pattern using an empirical model based on parsimonious functions of latitude, an aridity index, mean‐annual temperature, and slope gradient. Using this empirical model and the literature as guides, we present a conceptual model for the slope‐aspect‐driven CZ feedbacks that generate asymmetry in water‐limited and temperature‐limited end‐member cases. In this conceptual model the dominant factor driving slope aspect differences at relatively low latitudes and elevations is the difference in mean‐annual soil moisture. The dominant factor at higher latitudes and elevations is temperature limitation on vegetation growth. In water‐limited cases, we propose that higher mean‐annual soil moisture on pole‐facing hillslopes drives higher soil production rates, higher water storage potential, more vegetation cover, faster dust deposition, and lower erosional efficiency in a positive feedback. At higher latitudes and elevations, pole‐facing hillslopes tend to have less vegetation cover, greater erosional efficiency, and gentler slopes, thus reversing the pattern of asymmetry found at lower latitudes and elevations. Our conceptual model emphasizes the linkages among short‐ and long‐timescale processes and across CZ sub‐disciplines; it also points to opportunities to further understand how CZ processes interact. We also demonstrate the importance of paleoclimatic conditions and non‐climatic factors in influencing slope aspect variations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
80.
We present Stokes I Zeeman splitting measurements of sunspots using the highly sensitive (g = 3) Fe i line at = 1.5649 m. The splittings are compared with simultaneous intensity measurements in the adjacent continuum. The relation between magnetic field strength and temperature has a characteristic, nonlinear shape in all the spots studied. In the umbra, there is an approximately linear relation between B 2 and T b, consistent with magnetohydrostatic equilibrium in a nearly vertical field. A distinct flattening of the B 2 vs T brelationship in the inner penumbra may be due to changes in the lateral pressure balance as the magnetic field becomes more horizontal; spatially unresolved intensity inhomogeneities may also influence the observed relation.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号