首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   14篇
测绘学   4篇
大气科学   16篇
地球物理   103篇
地质学   100篇
海洋学   26篇
天文学   40篇
自然地理   10篇
  2019年   2篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   15篇
  2008年   14篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   7篇
  1980年   3篇
  1978年   6篇
  1977年   6篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1961年   2篇
  1960年   3篇
  1956年   2篇
  1955年   2篇
  1954年   3篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
121.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   
122.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   
123.
Forests modify snow processes and affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate and topography and are therefore subject to temporal and spatial variability. We utilize multiple years of snow observations from across the Pacific Northwest, United States, to assess forest–snow interactions in the relatively warm winter conditions characteristic of maritime and transitional maritime–continental climates. We (a) quantify the difference in snow magnitude and disappearance timing between forests and open areas and (b) assess how forest modifications of snow accumulation and ablation combine to determine whether snow disappears later in the forest or in the open. We find that snow disappearance timing at 12 (out of 14) sites ranges from synchronous in the forest and open to snow persisting up to 13 weeks longer in the open relative to a forested area. By analyzing accumulation and ablation rates up to the day when snow first disappears from the forest, we find that the difference between accumulation rates in the open and forest is larger than the difference between ablation rates. Thus, canopy snow interception and subsequent loss, rather than ablation, set up longer snow duration in the open. However, at two relatively windy sites (hourly average wind speeds up to 8 and 17 m/s), differential snow disappearance timing is reversed: Snow persists 2–5 weeks longer in the forest. At the windiest sites, accumulation rates in the forest and open are similar. Ablation rates are higher in the open, but the difference between ablation rates in the forest and open at these sites is approximately equivalent to the difference at less windy sites. Thus, longer snow retention in the forest at the windiest sites is controlled by depositional differences rather than by reduced ablation rates. These findings suggest that improved quantification of forest effects on snow accumulation processes is needed to accurately predict the effect of forest management or natural disturbance on snow water resources.  相似文献   
124.
The Galatia meteorite was found in August, 1971, approximately 7 km ENE of Galatia, Barton County, Kansas (98° 53′W., 38° 39.5′N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa24.9) and pyroxene (Fs20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. Galatia is similar in many respects to the Otis L6 chondrite (found 20 km to the west), but it does not have the brecciated structure of Otis and, thus, it is not part of the same fall.  相似文献   
125.
126.
127.
128.
The Tyro and Bannock Basins, which are depressions in the eastern Mediterranean, contain hypersaline anoxic brines. These brines are of different composition: Tyro brine is primarily an early-stage halite (NaCl) brine, whereas Bannock brine includes the more soluble ions of late-stage evaporite minerals. Accordingly, the Bannock brine contains a much greater sulphate concentration than the Tyro Brine. This difference in sulphate concentration is reflected in the concentrations of ions such as Ca, Sr and Ba, which form sparingly soluble sulphate minerals.Equilibrium calculations using the Pitzer specific ion interaction model indicate that the brines in both basins are saturated with respect to gypsum (CaSO4-2H2O) and supersaturated to saturated with respect to dolomite (CaMg(CO3)2). The degree of saturation with respect to dolomite is greater in the Bannock Basin than it is in the Tyro Basin. Correspondingly, recent gypsum crystals and dolomite hardgrounds have been found in the Bannock Basin but not in the Tyro Basin.The Tyro brine is homogeneous in composition, whereas the Bannock brine demonstrates a clear two-layer brine structure. At the interface of the upper and the lower brine distinct positive anomalies occur in the total alkalinity and the concentration of phosphate, and negative anomalies occur in the concentrations of Mn2+ and the rare earth elements (REE). These anomalies and the observed association of gypsum/dolomite in the sediments are all consistent with a recent precipitation of dolomite and gypsum in the Bannock Basin. The brines in both basins are also saturated with respect to barite (BaSO4).The 87Sr/86Sr and δ34S ratios of the Bannock brines are amazingly consistent but differ dramatically from the values for modern or Messinian-age seawater. The Sr concentration and Sr and S isotope ratios in the gypsum crystals indicate that most of these crystals have resulted from precipitation/recrystallization from the brine and not from seawater. The observed variations between crystals are thought to reflect the recrystallization of (sub-) outcropping Messinian gypsum with a low 87Sr/86Sr ratio in the presence of seawater or brine fluids and with different extents of diagenesis.  相似文献   
129.
We compared the signals of several water column properties (upwelling intensity, sea level anomaly, temperature, nutrients, dissolved oxygen, chlorophyll-a, and surface sediments) of the continental shelf off Concepción (36°S) during the 1997-1998 El Niño with those of a normal year (2002-2003). We found that the primary hydrographic effect of El Niño 1997-1998 was a reduction in the input of nutrient-rich, oxygen-poor Equatorial Subsurface Water over the shelf. This affected the biology of the water column, as evidenced by the reduced phytoplankton biomass. Surface sediment properties (biogenic opal, organic carbon, bulk δ15N) observed during El Niño 1997-1998 reflected a reduced export production and the sediments failed to show the water column seasonality that occurs under normal conditions. In addition, weakened denitrification and/or upper water column fertilization could be inferred from the sedimentary δ15N. Although diminished, export production was preserved in the surface sediments, revealing less degraded organic matter in the upwelling period of the El Niño year than in the normal year. We suggest that the fresher organic material on the seafloor was probably associated with a severe reduction in the polychaete Parapronospio pinnata, which is considered to be the most important metazoan remineralizer of organic carbon at the sediment-water interface in the study area.  相似文献   
130.
Polarographic techniques have been used to determine reduced inorganic sulphur speciation in recent anoxic marine sediments from two hypersaline basins, the Tyro and the Bannock Basins, in the Eastern Mediterranean. The following phases were determined: acid volatile sulphur (AVS), pyritic sulphur and zerovalent sulphur. The determination of AVS and pyrite was based respectively on the acidification and Cr(II) reduction of these sulphur components to H2S. H2S was collected in base and the sulphide concentration was measured by polarography. Standard Na2S and pyrite gave recoveries of 99.6% ± 3.9% and 97% ± 12% respectively. Total zerovalent sulphur in a sediment sample was measured by the reaction of sulphite with thiosulphate. Thiosulphate was measured directly by polarography.

Pyrite is the main phase of inorganic reduced sulphur in the sediments from the Tyro and the Bannock Basins, and it has about the same average level (125 υmoles per gramme dry weight) in the cores recovered from the two areas. However, the distribution of pyrite in the top 100 cm of the two cores differs significantly. In the Bannock Basin a sharp increase is observed with depth, whereas in the Tyro Basin there is a small decrease with depth.

The total amount of reduced inorganic sulphur is less than the total amount of sulphur in the sediments. This indicates that there must be additional sulphur-bearing phases. One of these phases may be gypsum, and indeed, gypsum crystals have been observed in the Bannock Basin.

In neither basin is there a significant correlation between reduced sulphur and organic carbon. The pyrite that occurs in these basins may have been formed syngenetically at the interface of the anoxic brine and oxic seawater. Diagenetic pyrite may have been formed within the sediments of the basins. AVS and total zerovalent sulphur are still observed at depth. We therefore suggest that this may be due to the incomplete transformation of AVS and zerovalent sulphur into pyrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号