The behavior and fates of environmental pollutants within the cryosphere and the associated environmental impacts are of increasing concerns in the context of global warming.The Tibetan Plateau(TP),also known as the"Third Pole",represents one of the most important cryospheric regions in the world.Mercury(Hg)is recognized as a global pollutant.Here,we summarize the current knowledge of Hg concentration levels,pools and spatio-temporal distribution in cryospheric environments(e.g.,glacier,permafrost),and its transfer and potential cycle in the TP cryospheric region.Transboundary transport of anthropogenic Hg from the surrounding heavily-polluted regions,such as South and Southeast Asia,provides significant sources of atmospheric Hg depositions onto the TP cryosphere.We concluded that the melting of the cryosphere on the TP represents an increasing source of Hg and brings a risk to the TP environment.In addition,global warming acts as an important catalyst accelerating the release of legacy Hg from the melting cryosphere,adversely impacting ecosystems and biological health.Furthermore,we emphasize on the remaining gaps and proposed issues needed to be addressed in future work,including enhancing our knowledge on some key release pathways and the related environmental effects of Hg in the cryospheric region,integrated observation and consideration of Hg distribution,migration and cycle processes at a key region,and uses of Hg isotopic technical and Hg models to improve the understanding of Hg cycling in the TP cryospheric region. 相似文献
We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time
migration, using the residual curvature analysis and layer stripping strategy to build the velocity model. This method improves
the image resolution of Kirchhoff integral migration and reduces the computations of the reverse time migration. It combines
the advantages of efficiency and accuracy of the two migration methods. Its application in tunnel seismic prediction shows
good results. Numerical experiments show that the imaging results of reverse time migration are better than the imaging results
of Kirchhoff integral migration in many aspects of tunnel prediction. Field data show that this method has efficient computations
and can establish a reasonable velocity model and a high quality imaging section. Combination with geological information
can make an accurate prediction of the front of the tunnel geological structure. 相似文献
The movement of hard and thick key stratum during underground coal extraction via longwall top coal caving differs from that of other types of overlying strata. Therefore, numerous problems such as roadway instability, rock burst and strong mining-induced mine seismicity will be encountered as a result of the fracture of a hard and thick key stratum. The key to controlling the behavior of strata is to understand the movement and fracture pattern of the hard and thick key stratum. Taking the 103up02 working face of Baodian coal mine as a case study in this study, according to the in situ measured microseismic data, the rule of fracture of overlying hard and thick sandstone caused by working face mining is studied, and the mechanism of dynamic pressure impact induced by hard and thick strata fracture is explained. Finally, the dynamic pressure control technology is put forward. The research results are of great significance for coal mining under hard and thick strata, mastering the fracture rules of hard and thick strata and predicting dynamic disasters. 相似文献