首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3412篇
  免费   94篇
  国内免费   45篇
测绘学   68篇
大气科学   207篇
地球物理   863篇
地质学   1152篇
海洋学   364篇
天文学   554篇
综合类   17篇
自然地理   326篇
  2021年   35篇
  2020年   44篇
  2019年   49篇
  2018年   70篇
  2017年   52篇
  2016年   92篇
  2015年   70篇
  2014年   92篇
  2013年   178篇
  2012年   105篇
  2011年   152篇
  2010年   118篇
  2009年   151篇
  2008年   133篇
  2007年   131篇
  2006年   128篇
  2005年   125篇
  2004年   100篇
  2003年   94篇
  2002年   98篇
  2001年   72篇
  2000年   66篇
  1999年   62篇
  1998年   48篇
  1997年   47篇
  1996年   41篇
  1995年   55篇
  1994年   50篇
  1993年   43篇
  1992年   33篇
  1991年   45篇
  1990年   42篇
  1989年   38篇
  1988年   39篇
  1987年   39篇
  1986年   31篇
  1985年   55篇
  1984年   56篇
  1983年   59篇
  1982年   62篇
  1981年   53篇
  1980年   47篇
  1979年   52篇
  1978年   42篇
  1977年   54篇
  1976年   49篇
  1975年   38篇
  1974年   29篇
  1973年   37篇
  1972年   28篇
排序方式: 共有3551条查询结果,搜索用时 156 毫秒
121.
Along the upper reaches of the Gediz River in western Turkey, in the eastern part of the Aegean extensional province, the land surface has uplifted by 400 m since the Middle Pliocene. This uplift is revealed by progressive gorge incision, and its rate can be established because river terraces are capped by basalt flows that have been K–Ar and Ar–Ar dated. At present, the local uplift rate is 0.2 mm a−1. Uplift at this rate began around the start of the Middle Pleistocene, following a span of time when the uplift was much slower. This was itself preceded by an earlier uplift phase, apparently in the late Late Pliocene and early Early Pleistocene, when the uplift rate was comparable to the present. The resulting regional uplift history resembles what is observed in other regions and is analogously interpreted as the isostatic response to changing rates of surface processes linked to global environmental change. We suggest that this present phase of surface uplift, amounting so far to 150 m, is being caused by the nonsteady-state thermal and isostatic response of the crust to erosion, following an increase in erosion rates in the late Early Pleistocene, most likely as a result of the first large northern-hemisphere glaciation during oxygen isotope stage 22 at 870 ka. We suggest that the earlier uplift phase, responsible for the initial 250 m of uplift, resulted from a similar increase in erosion rates caused by the deterioration in local climate at 3.1 Ma. This uplift thus has no direct relationship to the crustal extension occurring in western Turkey, the rate and sense of which are thought not to have changed significantly on this time scale. Our results thus suggest that the present, often deeply incised, landscape of western Turkey has largely developed from the Middle Pleistocene onwards, for reasons not directly related to the active normal faulting that is also occurring. The local isostatic consequences of this active faulting are instead superimposed onto this “background” of regional surface uplift. Modelling of this surface uplift indicates that the effective viscosity of the lower continental crust beneath this part of Turkey is of the order of 1019 Pa s, similar to a recent estimate for beneath central Greece. The lower uplift rates observed in western Turkey, compared with central Greece, result from the longer typical distances of fluvial sediment transport, which cause weaker coupling by lower-crustal flow between offshore depocentres and eroding onshore regions that provide the sediment source.  相似文献   
122.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   
123.
Rainfall regimes with strong spatial and temporal variation are characteristic of many coastal regions of north and eastern Australia. In coastal regions of north eastern Australia, regimes vary considerably over short distances. This occurs because of changes in local topography, including the height and orientation of mountain ranges and the direction of the coastline with respect to the prevailing moist south east air stream. Northern Australia experiences a tropical monsoon climate with rainfall occurring predominantly during the summer months. Areas with a closer proximity to the coast typically experience the heavier rainfalls. While networks of rainfall gauges have been established and continuous records are available for most of these stations from the 1890s, their low distribution density relative to the complexity of rainfall pattern they are required to represent means that there remains a poor understanding of the spatial and temporal distribution of rainfall in the wet tropics. An enhanced knowledge of rainfall distribution in both space and time has the potential to deliver significant economic and environmental benefits to managers of natural resources. This paper reports on the application of a technique for estimating mean annual and mean monthly rainfall across the Herbert River catchment of north east Australia's dry and wet tropics. The technique utilises thin plate smoothing splines to incorporate both location and elevation into estimates of rainfall distribution. We demonstrate that the method can be applied successfully at the meso scale and within the domain of routinely available data. As such, the method has broad relevance for decision making.  相似文献   
124.
125.
126.
127.
Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland. The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ~250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.  相似文献   
128.
129.
Continental rift systems and anorogenic magmatism   总被引:1,自引:0,他引:1  
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes.  相似文献   
130.
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号