首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   11篇
大气科学   15篇
地球物理   46篇
地质学   62篇
海洋学   34篇
天文学   53篇
综合类   1篇
自然地理   10篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   14篇
  2017年   9篇
  2016年   12篇
  2015年   12篇
  2014年   12篇
  2013年   9篇
  2012年   6篇
  2011年   11篇
  2010年   17篇
  2009年   13篇
  2008年   15篇
  2007年   6篇
  2006年   8篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有221条查询结果,搜索用时 31 毫秒
91.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   
92.
93.
In many Alpine catchments the monitoring and hazard mitigation of debris‐flow events require enormous economic and social resources. To confront these problems, a subjective estimation of the most hazardous zones of the basin could be useful in the best, sustainable planning of protective measures. In this paper, a new methodology is proposed that develops a Management Priority Index (MPI) to rank sediment source areas by their quantitative capability to deliver debris‐flow volumes to a point of interest within the catchment. The MPI sets the intervention priority based on a combination of three sub‐indicators: a susceptibility indicator evaluating the overall catchment predisposition to generate debris flow, a triggering indicator and a volume budget indicator assessing the rate of deliverable volume to a selected outlet. MPI was applied to the basin of the Rio Gadria catchment (Venosta Valley, Bolzano, Italy), an alpine basin with an unlimited sediment supply that is characterized by multiple, very active, shallow landslides and bare soil zones. The proposed ranking method was successfully verified using post‐event surveys and through evidence from consolidation check dams built over many years in the basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   
95.
We present a numerical, catchment-scale model that solves flow equations of surface and subsurface flow in a three-dimensional domain. Surface flow is described by the two-dimensional parabolic approximation of the St. Venant equation, using Manning’s equation of motion; subsurface flow is described by the three-dimensional Richards’ equation for the unsaturated zone and by three-dimensional Darcy’s law for the saturated zone, using an integrated finite difference formulation. The hydrological component is a dynamic link library implemented within a comprehensive model which simulates surface energy, radiation budget, snow melt, potential evapotranspiration, plant development and plant water uptake. We tested the model by comparing distributed and integrated three-dimensional simulated and observed perched water depth (PWD), stream flow data, and soil water contents for a small catchment. Additional tests were performed for the snow melting algorithm as well as the different hydrological processes involved. The model successfully described the water balance and its components as evidenced by good agreement between measured and modelled data.  相似文献   
96.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   
97.
Since the Saturn orbit insertion (SOI) of the Cassini spacecraft, in July 2004, the Cassini Composite Infrared Spectrometer (CIRS) has obtained a large number of thermal infrared spectra of Saturn's rings. Over the two and a half years of observations to date, ring temperatures were retrieved for a large range of unique geometries, inaccessible from Earth. Understanding their dependencies with phase angle and local time is a clue to understanding the thermal properties and dynamics of Saturn's ring particles.Azimuthal scans of rings, which have been obtained by CIRS at constant radial distance from the planet, have been planned to measure ring temperature variations with local hour angle. Over 47 azimuthal scans for Saturn's main rings (A, B, C and Cassini Division) have been retrieved to date, on both lit and unlit sides, at different phase angles and spacecraft elevations. The first measurements of the transient thermal episode of eclipse cooling in the planetary shadow have also been obtained for all three rings.In this paper, we present an overview of all azimuthal scans obtained by the Cassini/CIRS instrument so far and the dependencies of the temperature and the filling factor with the phase angle and the local hour angle. The ring temperature varies with longitude as the input heating flux coming from Saturn and the Sun changes. The decrease in temperature with the increasing phase angle on both the lit and the unlit sides and for most of the local time also suggests the presence of slowly rotating particles. The crossing of the planet's shadow generates drastic azimuthal variations in temperature, up to 20 K in the C ring. The strong anisotropy of emission observed outside the shadow between low and high phase angles decreases when ring particles cross the shadow, suggesting that particles are almost isothermal in the shadow. This suggests a thermal inertia associated with a rotating rate of particles low enough to have a thermal contrast on their surface.The temperature in the B ring is less sensitive to the phase angle effect on the lit side, suggesting that particles are close enough to form a flat layer at a scale larger than the particle's radius. On the unlit side, particles in the B ring are less sensitive to the lack of solar input than in the C ring or in the A ring. Azimuthal variations of the filling factor in the A ring are also detected with changing ring local time. This effect might be created by the presence of gravitational instabilities (wakes).  相似文献   
98.
There are large uncertainties associated with radar estimates of rainfall, including systematic errors as well as the random effects from several sources. This study focuses on the modeling of the systematic error component, which can be described mathematically in terms of a conditional expectation function. The authors present two different approaches: non-parametric (kernel-based) and parametric (copula-based). A large sample (more than six years) of rain gauge measurements from a dense network located in south-west England is used as an approximation of the true ground rainfall. These data are complemented with rainfall estimates by a C-band weather radar located at Wardon Hill, which is about 40 km from the catchment. The authors compare the results obtained using the parametric and non-parametric schemes for four temporal scales of hydrologic interest (5 and 15 min, hourly and three-hourly) by means of several different performance indices and discuss the strengths and weaknesses of each approach.  相似文献   
99.
The recently detected linear polarization in the optical light curve of GRB 990510 renewed interest in how polarization can be produced in gamma-ray burst fireballs. Here we present a model based on the assumption that we are seeing a collimated fireball, observed slightly off-axis. This introduces some degree of anisotropy, and makes it possible to observe a linearly polarized flux even if the magnetic field is completely tangled in the plane orthogonal to the line of sight. We construct the light curve of the polarization flux, showing that it is always characterized by two maxima, with the polarization position angle changing by 90° between the first and the second maximum. The very same geometry as assumed here implies that the total flux initially decays in time as a power law, but gradually steepens as the bulk Lorentz factor of the fireball decreases.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号