Effects of deforestation upon slopes in limestones and in volcanic rocks in the Benson River valley, northern Vancouver Island, have been investigated quantitatively. Postlogging soil erosion and vegetal regeneration success were assessed by measuring soil depth, percent bare rock and moss cover, and the numbers and diversity of trees, shrubs, and plants on 25 sampling sites, each containing ten measuring quadrats selected at random. Sixteen sites were on the Quatsino Formation, a well-karstified limestone, and nine on the Karmutsen Formation of basaltic lavas. Eight sites were of virgin forest, 16 were logged between 1970 and 1983, and one (on limestone) was logged in 1911. Both bedrock types were significantly affected by the cutting. There was greater loss of soil and an increase in bare rock on the limestones. Erosion was increased significantly by burning on the limestones but not on the volcanics. Within-group comparisons on the limestones determined that steeper slopes and harder burned areas suffered the most and are slowest to regenerate. Volume of timber on the 1911 site was 19 percent of that in similar uncut forest sites. It appears that complete recovery on the barren limestone slopes will require at least some centuries. 相似文献
The detention pond is one of the crucial items in detention facilities. It may effectively alleviate the occurrence of peak discharge, control the center of flood flow, and reduce the amount of soil loss. The objective of this study is analyzing the detention volume change of a detention pond with long-duration rainfall under the known isosceles trapezoidal inflow hydrograph model. The volume change of detention, which is under the influences of a givenisosceles trapezoidal inflow hydrograph and the extent of peak attenuation, is investigated by using the non-dimensional detention theory and the related mathematical analyses. The minimum detention volume of a detention pond can therefore be calculated based on the estimated of volume change of detention. The proposed detention volume estimation model can be used for the design of detention of facilities during the hillside development. 相似文献
Due to its rapid growth, the introduced mangrove species Sonneratia apetala from Bangladesh has been widely used in mangrove restoration in southeastern China since 1985. As an indigenous mangrove species in Hainan, China, Sonneratia caseolaris was also planted in Guangdong Province for afforestation purposes. Both species have developed well in their new habitats, but their ecophysiological differences with the native mangrove species have not been studied. In this study, leaf gas exchange, water and nitrogen use efficiencies of two Sonneratia species were compared with those of selected native mangrove species (Avicennia marina, Aegiceras corniculatum, Kandelia candel, and Excoecaria agallocha) in Hainan and Shenzhen. The introduced S. apetala maintained lower carbon assimilation rate (A) and photosynthetic nitrogen use efficiency (PNUE) than the indigenous S. caseolaris. In Shenzhen, the two introduced Sonneratia had comparable photosynthetic rates and water use efficiency (WUE) with the native mangrove species, except that PNUE in S. caseolaris was significantly higher than in the native mangrove species. The two Sonneratia species showed significant overlap in PNUE and long-term WUE. Photosynthetic parameters derived from leaf photosynthetic light–response curves and A–Ci curves also suggested lower carbon assimilation capacities for the introduced Sonneratia than for the native mangrove species in both study sites. The lower light compensation point (LCP) of two introduced Sonneratia in both study sites also indicated a better adaptation to a low light regime than the native mangrove species. The results of photosynthetic capacities indicated that the introduced mangrove species have little competitive advantage over local native mangrove species in their respective new habitats. 相似文献
Two semi-asymmetric flow patterns of typhoons are chosen to qualitatively determine the effect of exchange of horizontal momentum between inflow and outflow layers and the environment on the motion of typhoons. The results show that only the asymmetric flow component (residual after azimuthal mean flow has been removed) could cause a net momentum input into or output from a typhoon and therefore contribute to the changes in speed and direction of the typhoon movement. A typhoon with major inflow and/or outflow channels on its right (left) side would tend to accelerate and turn left (decelerate and turn right); On the other hand, a typhoon with major inflow and/or outflow channels in the rear (front) semicircle would tend to accelerate and turn right (decelerate and turn left). 相似文献