首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2218篇
  免费   57篇
  国内免费   25篇
测绘学   62篇
大气科学   223篇
地球物理   400篇
地质学   895篇
海洋学   160篇
天文学   398篇
综合类   12篇
自然地理   150篇
  2021年   19篇
  2020年   20篇
  2019年   24篇
  2018年   45篇
  2017年   35篇
  2016年   56篇
  2015年   34篇
  2014年   60篇
  2013年   98篇
  2012年   65篇
  2011年   100篇
  2010年   97篇
  2009年   159篇
  2008年   96篇
  2007年   121篇
  2006年   94篇
  2005年   110篇
  2004年   72篇
  2003年   60篇
  2002年   64篇
  2001年   47篇
  2000年   53篇
  1999年   37篇
  1998年   31篇
  1997年   31篇
  1996年   26篇
  1995年   25篇
  1994年   31篇
  1993年   25篇
  1992年   21篇
  1991年   18篇
  1990年   19篇
  1987年   15篇
  1986年   17篇
  1985年   23篇
  1984年   22篇
  1983年   26篇
  1982年   32篇
  1981年   24篇
  1980年   25篇
  1978年   16篇
  1977年   16篇
  1976年   24篇
  1975年   15篇
  1974年   14篇
  1973年   24篇
  1972年   20篇
  1971年   20篇
  1970年   14篇
  1967年   14篇
排序方式: 共有2300条查询结果,搜索用时 15 毫秒
81.
82.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   
83.
84.
85.
Gold partitioning in melt-vapor-brine systems   总被引:5,自引:0,他引:5  
We used laser-ablation inductively coupled plasma mass spectrometry to measure the solubility of gold in synthetic sulfur-free vapor and brine fluid inclusions in a vapor + brine + haplogranite + magnetite + gold metal assemblage. Experiments were conducted at 800°C, oxygen fugacity buffered at Ni-NiO (NNO), and pressures ranging from 110 to 145 MPa. The wt% NaCl eq. of vapor increases from 2.3 to 19 and that of brine decreases from 57 to 35 with increasing pressure. The composition of the vapors and brines are dominated by NaCl + KCl + FeCl2 + H2O. Gold concentrations in vapor and brine decrease from 36 to 5 and 50 to 28 μg/g, respectively, and the calculated vapor:brine partition coefficients for gold decrease from 0.72 to 0.17 as pressure decreases from 145 to 110 MPa. These data are consistent with the thermodynamic boundary condition that the concentration of gold in the vapor and brine must approach a common value as the critical pressure is approached along the 800°C isotherm in the NaCl-KCl-FeCl2-HCl-H2O system.We use the equilibrium constant for gold dissolution as AuOH0, extrapolated from lower temperature and overlapping pressure range, to calculate expected concentrations of AuOH0 in our experimental vapors. These calculations suggest that a significant quantity of gold in our experimental vapors is present as a non-hydroxide species. Possible chloridogold(I) species are hypothesized based on the positively correlated gold and chloride concentrations in our experimental vapors. The absolute concentration of gold in our synthetic vapor, brine, and melt and calculated mass partition coefficients for gold between these physicochemically distinct magmatic phases suggests that gold solubility in aqueous fluids is a function of aqueous phase salinity, specifically total chloride concentration, at magmatic conditions. However, though we highlight here the effect of salinity, the combination of our data with data sets from lower temperatures evinces a significant decrease in gold solubility as temperature drops from 800°C to 600°C. This decrease in solubility has implications for gold deposition from ascending magmatic fluids.  相似文献   
86.
Trace element compositions of submicroscopic inclusions in both the core and the coat of five coated diamonds from the Democratic Republic of Congo (DRC, formerly Zaire) have been analyzed by Laser Ablation Inductively Coupled Mass Plasma Spectrometry (LA-ICP-MS). Both the diamond core and coat inclusions show a general 2-4-fold enrichment in incompatible elements relative to major elements. This level of enrichment is unlikely to be explained by the entrapment of silicate mantle minerals (olivine, garnet, clinopyroxene, phlogopite) alone and thus submicroscopic fluid or glass inclusions are inferred in both the diamond coat and in the gem quality diamond core. The diamond core fluids have elevated High Field Strength Element (Ti, Ta, Zr, Nb) concentrations and are enriched in U relative to inclusions in the diamond coats and relative to chondrite. The core fluids are also moderately enriched in LILE (Ba, Sr, K). Therefore, we suggest that the diamond cores contain inclusions of silicate melt. However, the Ni content and Ni/Fe ratio of the trapped fluid are very high for a silicate melt in equilibrium with mantle minerals; high Ni and Co concentrations in the diamond cores are attributed to the presence of a sulfide phase coexisting with silicate melt in the diamond core inclusions. Inclusions in the diamond coat are enriched in LILE (U, Ba, Sr, K) and La over the diamond core fluids and to chondrite. The coats have incompatible element ratios similar to natural carbonatite (coat fluid: Na/Ba ≈0.66, La/Ta≈130). The coat fluid is also moderately enriched in HFSE (Ta, Nb, Zr) when normalized to chondritic Al. LILE and La enrichment is related to the presence of a carbonatitic fluid in the diamond coat inclusions, which is mixed with a HFSE-rich hydrous silicate fluid similar to that in the core. The composition of the coat fluid is consistent with a genetic link to group 1 kimberlite.  相似文献   
87.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
88.
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance.  相似文献   
89.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
90.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号