首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   29篇
  国内免费   5篇
测绘学   17篇
大气科学   45篇
地球物理   150篇
地质学   210篇
海洋学   70篇
天文学   81篇
综合类   7篇
自然地理   61篇
  2021年   10篇
  2020年   7篇
  2019年   14篇
  2018年   11篇
  2017年   8篇
  2016年   21篇
  2015年   12篇
  2014年   13篇
  2013年   38篇
  2012年   21篇
  2011年   34篇
  2010年   29篇
  2009年   36篇
  2008年   19篇
  2007年   29篇
  2006年   28篇
  2005年   17篇
  2004年   14篇
  2003年   14篇
  2002年   10篇
  2001年   13篇
  2000年   7篇
  1999年   11篇
  1998年   14篇
  1997年   4篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   11篇
  1987年   10篇
  1986年   5篇
  1985年   11篇
  1984年   12篇
  1983年   13篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   12篇
  1974年   6篇
  1973年   8篇
  1969年   3篇
  1965年   2篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
51.
On the basis of ultrastructural, biochemical and genetic studies, bacteria and blue green algae (Kingdom Monera, all prokaryotes) differ unambiguously from the eukaryotic organisms (Fungi, plants sensu stricto) and protists or protoctists, (Copeland, 1956). The gap between eukaryotes and prokaryotes is recognized as the most profound evolutionary discontinuity in the living world. This gap is reflected in the fossil record. Fossil remains of Archaean and Proterozoic Aeons primarily consist of prokaryotes and the Phanerozoic is overwhelmingly characterized by fossils of the megascopic eukaryotic groups, both metazoa and metaphyta. Based on the morphological interpretation of microscopic objects structurally preserved in Precambrian cherts, the time of appearance of remains of eukaryotic organisms in the fossil record has been claimed to be as early as 2.7 · 109 years ago, (Ka?mierczak, 1976). Others suggest chronologies varying between 1.7 to 1.3 · 109 (Schopf et al., 1973) or a time approaching 1.3 · 109 years (Cloud, 1974).There is general agreement that many of the Ediacaran faunas, which have been dated at about 680 m.y. are fossils of megascopic soft-bodied invertebrate animals. Since all invertebrates are eukaryotic, the ca. 680 m.y. date for deposition of these animal assemblages may represent the earliest appearance of eukaryotic organisms. But the question remains as to whether there is definitive evidence for eukaryotic cells before this “benchmark” of the late Precambrian.An excellent discussion of this particular problem as especially relating to acritarchs extending from rocks of Upper Riphean through Vendian and into the basal Cambrian is presented in recent studies by Vidal (1974, 1976) in Late Precambrian microfossils from the Visingsö rocks of southern Sweden.Previous work on the laboratory silicification of wood and algal mat communities (Leo and Barghoorn, 1976) suggested that further analysis of “artificial fossils” might be of aid in the interpretation of fossil morphology toward the ultimate solution of this problem. Thus the procedure developed by one of us (ESB) for laboratory wood silicification was adapted to various smaller objects.By successive immersions of wet cellular aggregates, colonies of various organisms and abiotic organic microspheres in tetraethyl orthosilicate, silicified cells and structures are produced which bear an interesting resemblance to ancient chert-embedded microfossils. Our observation of these microorganisms and proteinoid microspheres silicified in the laboratory as well as of degrading microorganisms, both eukaryotic and prokaryotic, have led us to conclude that many, if not all, of the criteria for assessing fossil eukaryotic microorganisms are subject to serious criticism in interpretation. We studied a large variety of prokaryotic algae, some eukaryotic algae, fungi, protozoa, and abiotic organic microspheres stable at essentially neutral pH. In some cases, degradation and/or silicification systematically altered both size and appearances of microorganisms. By the use of monoalgal cultures of blue-green algae, features resembling nuclei, chloroplasts, tetrads, pyrenoids, and large cell size may be simulated. In many cases individual members of these cultures show so much variation that they may be mistaken as belonging to more than one species. The size ranges for silicified prokaryotic and eukaryotic algae overlap. Several prokaryotes routinely yielded spherical or filamentous structures that resembled large cells. Because of genuine large sizes (e.g., Prochloron), shrinkage, systematic alteration or congregation of unicells to form other structures we find sizes to be of very limited use in determining whether an organism of simple morphology was prokaryotic or eukaryotic. Although some “prebiotic proteinoid microspheres” (of Fox and Harada, 1960) are impossible to silicify with our laboratory methods, those stable at neutral pH (Hsu and Fox, 1976) formed spherical objects that morphologically resemble silicified algae or fungal spores. Many had internal structure. We conclude that even careful morphometric studies of fossil microorganisms are subject to many sources of misinterpretation. Even though it is a logical deduction that eukaryotic microorganisms evolved before Ediacaran time there is no compelling evidence for fossil eukaryotes prior to the late Precambrian metazoans.  相似文献   
52.
53.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   
54.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. Such interactions must have a significant impact upon the evolution of the protostars and their discs.   We have carried out a series of simulations of coplanar encounters between two stars, each possessing a massive circumstellar disc, using an SPH code that models gravitational, hydrodynamic and viscous forces. We find that during a coplanar encounter, disc material is swept up into a shock layer between the two interacting stars, and the layer then fragments to produce new protostellar condensations. The truncated remains of the discs may subsequently fragment; and the outer regions of the discs may be thrown off to form circumbinary disc-like structures around the stars. Thus coplanar disc–disc encounters lead efficiently to the formation of multiple star systems and small- N clusters, including substellar objects.  相似文献   
55.
We suggest that the abrupt switch, from hierarchical clustering on scales ≳ 0.04 pc, to binary (and occasionally higher multiple) systems on smaller scales, which Larson has deduced from his analysis of the grouping of pre-main-sequence stars in Taurus, arises because pre-protostellar gas becomes thermally coupled to dust at sufficiently high densities. The resulting change — from gas cooling by molecular lines at low densities to gas cooling by dust at high densities — enables the matter to radiate much more efficiently, and hence to undergo dynamical fragmentation. We derive the domain in which gas cooling by dust facilitates dynamical fragmentation. Low-mass (∼ M⊙) clumps — those supported mainly by thermal pressure — can probably access this domain spontaneously, albeit rather quasi-statically, provided that they exist in a region in which external perturbations are few and far between. More massive clumps probably require an impulsive external perturbation, for instance a supersonic collision with another clump, in order for the gas to reach sufficiently high density to couple thermally to the dust. Impulsive external perturbations should promote fragmentation, by generating highly non-linear substructures which can then be amplified by gravity during the subsequent collapse.  相似文献   
56.
Additional data for gabbro, GOG-1, were determined by instrumental-neutron-activation analysis, atomic-absorption spectrometry, and semi-quantitative spectrographic analysis. F ratios calculated in the analysis of variance for 26 sets of data for elements determined by the three methods were not significant, and hence the elements are distributed homogeneously among the bottles. The agreement between our data and the averages previously published ranges from very good to poor. More analytical data are necessary to establish reliable estimates of the concentrations of elements in GOG-1 and in two other gabbros so that three gabbros may be available to geochemists for use as standards.  相似文献   
57.
There is little concensus on the relative importance of crystal fractionation and differential partial melting to the chemical diversity observed within most types of volcanic suites. A resolution to this controversy is best sought in suites containing high MgO lavas such as the Chukotat volcanics of the Proterozoic Cape Smith foldbelt, Ungava, Quebec. The succession of this volcanic suite consists of repetitive sequences, each beginning with olivine-phyric basalt (19-12 wt% MgO), grading upwards to pyroxene-phyric basalt (12-8 wt% MgO) and then, in later sequences, to plagioclase-phyric basalt (7-4 wt% MgO). Only the olivine-phyric basalts have compositions capable of equilibrating with the upper mantle and are believed to represent parental magmas for the suite. The pyroxene-phyric and plagioclase-phyric basalts represent magmas derived from these parents by the crystal fractionation of olivine, with minor chromite, clinopyroxene and plagioclase. The order of extrusion in each volcanic sequence is interpreted to reflect a density effect in which successively lighter, more evolved magmas are erupted as hydrostatic pressure wanes. The pyroxene-phyric basalts appear to have evolved at high levels in the active part of the conduit system as the eruption of their parents was in progress. The plagioclase-phyric basalts may represent residual liquids expelled from isolated reservoirs along the crust-mantle interface during the late stages of volcanic activity.A positive correlation between FeO and MgO in the early, most basic olivine-phyric basalts is interpreted to reflect progressive adiabatic partial melting in the upper mantle. Although this complicates the chemistry, it is not a significant factor in the compositional diversification of the volcanic suite. The preservation of such compositional melting effects, however, suggests that the most basic olivine-phyric basalts represent primitive magmas. The trace element characteristics of these magmas, and their derivatives, indicate that the mantle source for the Chukotat volcanics had experienced a previous melting event.  相似文献   
58.
Fault gouges have been observed in the surface outcrops, in shallow excavations, and in deep (300 meters below the surface) tunnels and mines in fault zones. The 2-microns fractions in these fault gouges may compose a few percent to more than fifty percent of the total mass in the outcrops, and the mineralogy of the 2-microns fractions consists of a variety of clays (the common ones are montmorillonite, illite, kaolinite, chlorite, vermiculite and mixed-layer clays) and some quartz, feldspars, etc.Although we cannot yet conclude directly from the studies of gouges that similar gouges exist at depths where many large shallow earthquakes are generated, there is a strong possibility that they do, based on (1) available equilibrium data on various clays — for example, kaolinite has been found to exist at 4 kb and 375°C (±15°C) (Thompson, 1970) and montmorillonite + kaolite has been found to exist at 450°C and 4 kb (Velde, 1969); (2) the compatibility of laboratory velocity data in gouge (Wang et al., 1977) with those in a model for central California (Healy andPeake, 1975); (3) the capability of clays to undergo sudden earthquake-like displacements (Summers andByerlee, 1977); (4) the petrology of intrafault cataclastic rocks in old fault zones (Kasza, 1977); and (5) the compatibility of gouge mineralogy with the mineralogy of hydrothermal clay deposits.If clay gouges are indeed significant components of the fault zone at depth, then the mechanical properties of clays under confining pressures up to 4 kb are important in the behavior of faults. Very few experiments have been performed under such high pressures. But from the physical makeup of clays, we can infer that (1) the range of possible behavior includes stable sliding with vermiculite and montmorillonite (asByerlee andSummers, 1977, have proven) to stick-slip-like behavior with kaolinite, chlorite, etc.; (2) the absence or presence of water will greatly affect the strengths of gouges — it is possible that water may reduce the strength of gouge to a fairly small value.  相似文献   
59.
Moderate to strong biaxiality (2V = 10 °–45 °) in experimentally deformed calcite (in single crystals and in marble) is attributed to overlap between one or two thin {01¯12} twin lamellae and the enclosing host. A perfectly centered conoscopic figure (section normal to [0001]) is perceptibly asymmetric about the trace of the optic axial plane. This asymmetry is pronouned in thick sections (> 0.04 mm) and completely distrupts the biaxial configuration of the figure if the overlapping lamella exceeds about 0.0025 mm in thickness. In sections somewhat oblique to [0001] and cut at 20 ° or less to the plane of twinning the conoscopic figure may appear to be perfectly biaxial-expecially in thin sections ( 0.02 mm) enclosing thin ( 0.001 mm) but still visible twins.Similar values of 2V recorded for natural calcite likewise are attributed to twinning on a visible scale.  相似文献   
60.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号