首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   21篇
  国内免费   2篇
测绘学   2篇
大气科学   10篇
地球物理   120篇
地质学   129篇
海洋学   37篇
天文学   81篇
综合类   1篇
自然地理   29篇
  2024年   1篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   10篇
  2018年   16篇
  2017年   14篇
  2016年   27篇
  2015年   18篇
  2014年   12篇
  2013年   23篇
  2012年   11篇
  2011年   28篇
  2010年   26篇
  2009年   28篇
  2008年   24篇
  2007年   21篇
  2006年   15篇
  2005年   15篇
  2004年   18篇
  2003年   21篇
  2002年   11篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1972年   4篇
  1971年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
291.
292.
In this paper, we study a population balance equation (PBE) where flocs are distributed into classes according to their mass. Each class i contains i primary particles with mass m p and size L p. All differently sized flocs can aggregate, binary breakup into two equally sized flocs is used, and the floc??s fractal dimension is d 0?=?2, independently of their size. The collision efficiency is kept constant, and the collision frequency derived by Saffman and Turner (J Fluid Mech 1:16?C30, 1956) is used. For the breakup rate, the formulation by Winterwerp (J Hydraul Eng Res 36(3):309?C326, 1998), which accounts for the porosity of flocs, is used. We show that the mean floc size computed with the PBE varies with the shear rate as the Kolmogorov microscale, as observed both in laboratory and in situ. Moreover, the equilibrium mean floc size varies linearly with a global parameter P which is proportional to the ratio between the rates of aggregation and breakup. The ratio between the parameters of aggregation and breakup can therefore be estimated analytically from the observed equilibrium floc size. The parameter for aggregation can be calibrated from the temporal evolution of the mean floc size. We calibrate the PBE model using mixing jar flocculation experiments, see Mietta et al. (J Colloid Interface Sci 336(1):134?C141, 2009a, Ocean Dyn 59:751?C763, 2009b) for details. We show that this model can reproduce the experimental data fairly accurately. The collision efficiency ?? and the ratio between parameters for aggregation and breakup ?? and E are shown to decrease linearly with increasing absolute value of the ??-potential, both for mud and kaolinite suspensions. Suspensions at high pH and different dissolved salt type and concentration have been used. We show that the temporal evolution of the floc size distribution computed with this PBE is very similar to that computed with the PBE developed by Verney et al. (Cont Shelf Res, 2010) where classes are distributed following a geometrical series and mass conservation is statistically ensured. The same terms for aggregation and breakup are used in the two PBEs. Moreover, we argue, using both PBEs, that bimodal distributions become monomodal in a closed system with homogeneous sediment, even when a variable shear rate is applied.  相似文献   
293.
294.
295.
Simulations from hydrological models are affected by potentially large uncertainties stemming from various sources, including model parameters and observational uncertainty in the input/output data. Understanding the relative importance of such sources of uncertainty is essential to support model calibration, validation and diagnostic evaluation and to prioritize efforts for uncertainty reduction. It can also support the identification of ‘disinformative data’ whose values are the consequence of measurement errors or inadequate observations. Sensitivity analysis (SA) provides the theoretical framework and the numerical tools to quantify the relative contribution of different sources of uncertainty to the variability of the model outputs. In traditional applications of global SA (GSA), model outputs are aggregations of the full set of a simulated variable. For example, many GSA applications use a performance metric (e.g. the root mean squared error) as model output that aggregates the distances of a simulated time series to available observations. This aggregation of propagated uncertainties prior to GSA may lead to a significant loss of information and may cover up local behaviour that could be of great interest. Time‐varying sensitivity analysis (TVSA), where the aggregation and SA are repeated at different time steps, is a viable option to reduce this loss of information. In this work, we use TVSA to address two questions: (1) Can we distinguish between the relative importance of parameter uncertainty versus data uncertainty in time? (2) Do these influences change in catchments with different characteristics? To our knowledge, the results present one of the first quantitative investigations on the relative importance of parameter and data uncertainty across time. We find that the approach is capable of separating influential periods across data and parameter uncertainties, while also highlighting significant differences between the catchments analysed. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   
296.
Scientific research proposing any type of device/technique for seismic protection of buildings is generally based on numerical models that adopt simplifications to make possible extensive analyses. This means that important details of the inelastic response could be neglected. Following this consideration, regardless of the device/technique invented, before it could be put into practice, an experimental verification of the actual structural performance should be conducted by full-scale tests at building level. This issue is investigated in the paper considering seismic retrofit of reinforced concrete (RC) framed structures by buckling-restrained braces (BRBs) as technique to be validated, while hybrid test is selected as tool for experimental validation at building level. The analysed seismic upgrading technique consists in the insertion of BRBs into the RC frame. The upgrading intervention is designed by a method developed in previous studies. This technique responds to an important need of the society. Indeed, existing RC frames showed high vulnerability in occurrence of past earthquakes when they were not originally conceived to sustain horizontal forces. The hybrid test is selected among the available experimental techniques because it allows the experimentation on full-scale specimens with reasonable cost. In this study, a substructure hybrid test was conducted and the results are here presented to (a) evaluate the effectiveness of the design method of BRBs for seismic upgrading, (b) investigate the integration of BRBs in existing RC frame, and (c) show the potentiality of the substructure hybrid test for the experimental verification of innovative techniques for seismic protection of buildings.  相似文献   
297.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina–Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 106 m3. In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total post-seismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 106 m3. This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.  相似文献   
298.
In the outermost domains of the central Apennines fold-and-thrust belt, the structural architecture of the late Miocene–early Pliocene contractional edifice was controlled by competence contrasts in the Calcareous–Marly sequences of Mesozoic–Tertiary age, and by a different state of lithification of the rock units at the onset of deformation. Field data on relative chronology of outcrop-scale structures (cleavage, veins, faults, folds) are presented for the three largest thrust-ramp anticlines of the Marche fold-and-thrust belt: Monte Gorzano, Acquasanta and Montagna dei Fiori-Montagnone. The data show that the timing and geometry of deformation structures differ for: (1) the lower Calcareous interval of late Triassic–early Cretaceous age (LCI) bounded on top by the intermediate detachment (ID) of the Fucoidi Marls; (2) the upper Calcareous–Marly interval (UCMI) of late Cretaceous–Oligocene age; (3) the uppermost detachment zone (UDZ) of lower–middle Miocene age; (4) the topmost Messinian Flysch sequence (FS). In the UDZ early episodes of deformation are manifested by compaction of a poorly lithified sequence followed by pervasive development of layer-parallel pressure-solution cleavage. Reverse faults ramp obliquely across the stratigraphic sequence, and are coated by multiple overgrowths of calcite fibers. These structures are deformed by large, eastward-verging asymmetric folds with N–S axial trends, and are cut by late generations of reverse faults. Normal faults started to develop in the fold backlimbs during the final stages of shortening, in middle–late Pliocene times. These early normal faults were reactivated during episodes of late Pliocene–Pleistocene extensional downfaulting, and are now superposed on the compressional edifice. The UDZ is interpreted to have temporarily sealed the upward escape of fluids during the initial episodes of shortening. Pervasive interlayer flow in the poorly lithified sequence was responsible for development of broken beds and scaly fabrics, similar to those observed in accretionary prisms. Only in the latest stages of deformation did propagation of discrete faults provide an interconnected pathway for fluid migration, until the final offset of the UDZ. The structural relationships suggest that fluids trapped within the fold cores and sealed by the UDZ were finally driven upwards due to progressive disruption of the thrust belt by late normal faults of late Pliocene to Pleistocene and Holocene age. Large-scale fluid migration along structurally-controlled pathways was enhanced by the strong components of uplift consequent to the final stages of deformation in the Marche fold-and-thrust belt, and was eventually associated with episodes of normal seismic faulting.  相似文献   
299.
The multi-disciplinary work described in the paper was aimed at analyzing and predicting the cyclical ground surface movements induced by underground gas storage (UGS) activities in a depleted gas field located in the Po Plain (Italy). The field has been operated as a storage facility for nearly three decades. Currently, the possibility of delta-pressuring the reservoir (i.e. to increase the maximum operating pressure above the initial reservoir pressure) to enhance the storage performance is being considered. Significant information was collected over time: 2/3D seismic surveys, geological and sedimentological studies, 60+ logged wells, geotechnical lab tests and 50+ years of production history and monitoring were available for the development of a fully integrated static–dynamic–geomechanical analysis. The mechanical aspects of the study are the focus of this paper. The data coming from different sources at different scales were analysed and integrated to set up and characterize a 3D finite element method mechanical model to calculate the surface movements induced by UGS activity by adopting an elasto-plastic constitutive law. The model was then calibrated via a back analysis approach, i.e. the model parameters were fine-tuned so that the simulated subsidence/uplift would compare satisfactorily with the ground movements collected over nearly 10 years of monitoring via interferometric synthetic aperture radar analysis in the region under investigation. Eventually, the calibrated model was used as a forecasting tool for subsidence evaluation under different future storage strategies, including delta-pressuring conditions. Results proved that no significant subsidence is expected even if the maximum operating pressure reached 120 % of the initial formation pressure.  相似文献   
300.
Anisotropy of magnetic susceptibility (AMS) analysis has been carried out in the thermometamorphic aureole surrounding the Late Miocene Monte Capanne pluton (Elba Island, Central Italy). The identification and separation of the main carriers of the magnetic susceptibility by low-temperature and high-field AMS measurements demonstrate that a correct knowledge of the magnetic fabric is needed in order to use AMS for tectonic interpretations. Magnetic fabric data, combined with structural data from the aureole, and their comparison with data from the pluton itself, were used to constraint the mode of pluton emplacement. Results document an intimate linkage between the magmatic flow pattern and the syn-metamorphic fabrics acquired during pluton emplacement in the host rocks. The magnetic/structural fabric in the aureole rocks is dominated by flattening deformation and no systematic relationship with any regional tectonic feature is observed. These results suggest that local processes induced by magma ascent in the upper crust might have played a primary role in space generation for pluton emplacement in the Tuscan Magmatic Province, suggesting a revaluation of the modes of pluton emplacement during the post-orogenic evolution of the northern Apennine system as a whole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号