首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   11篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   54篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有229条查询结果,搜索用时 2 毫秒
41.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   
42.
The depositional architecture and the geometric relationships between platform-slope deposits and basinal sediments along with paleontological evidence indicate the time interval of the younger Anisian Reitziites reitzi ammonoid zone to largely represent the main stage of platform aggradation at the Cernera and Bivera/Clapsavon carbonate platforms. Published and new U-Pb age data of zircons from volcaniclastic layers bracketing the stratigraphic interval of platform growth constrain the duration of platform evolution to a time span shorter than 1.8±0.7m.y., probably in the order of 0.5-1m.y., reflecting fast rates of vertical platform aggradation exceeding 500 m/m.y. In the range of growth potentials for shallow-water carbonate systems estimated in relation to the time span of observation, this high rate is in agreement with values for short intervals of 105-106yrs (e.g., Schlager 1999). After drowning, the platforms at Cernera and Bivera/Clapsavon were blanketed by thin pelagic carbonates. On the former platform flanks the draping sediments in places comprise red nodular pelagic limestones (Clapsavon Limestone) similar in facies to the Han Bulog Limestones occurring elsewhere in Middle Triassic successions of the Mediterranean Tethys. The drowning of vast areas of former carbonate platforms possibly triggered the onset of bottom-water circulation in adjacent basins as suggested by the abrupt transition from laminated to bioturbated pelagic nodular limestones in the Buchenstein Formation which occurred close to the time of initial platform submergence. During the Late Ladinian the topographic features of the drowned platforms were onlapped by rapidly deposited, predominantly clastic successions including coarse breccias and volcanic rocks sealing and preserving the peculiar stratigraphic setting.  相似文献   
43.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
44.
The variability in the Caribbean Sea is investigated using high resolution (1/15°) general circulation model experiments. For the first time in this region, simulations were carried out with a 2-way nested configuration of the NEMO primitive equation model. A coarse North Atlantic grid (1/3°) reproduces the main features of the North Atlantic and Equatorial circulation capable of influencing ocean dynamics in the Caribbean Sea. This numerical study highlights strong dynamical differences among basins and modifies the view that dynamics are homogeneous over the whole Caribbean Basin. The Caribbean mean flow is shown to organize in two intense jets flowing westward along the northern and southern boundaries of the Venezuela Basin, which merge in the center of the Colombia Basin. Diagnostics of model outputs show that width, depth and strength of baroclinic eddies increase westward from the Lesser Antilles to the Colombia Basin. The widening and strengthening to the west is consistent with altimetry data and drifter observations. Although influenced by the circulation in the Colombia Basin, the variability in the Cayman Basin (which also presents a westward growth from the Chibcha Channel) is deeper and less energetic than the variability in the Colombia/Venezuela Basins. Main frequency peaks for the mesoscale variability present a westward shift, from roughly 50 days near the Lesser Antilles to 100 days in the Cayman Basin, which is associated with growth and merging of eddies.  相似文献   
45.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   
46.
Brittle fracture processes were hypothesized by several researches to cause a damage zone around an underground excavation in sulfate-rich clay rock when the stress exceeds the crack initiation threshold, and may promote swelling by crystal growth in newly formed fractures. In this study, laboratory experiments such as unconfined and confined compression tests with acoustic emission monitoring, and microstructural and mineralogical analyses are used to explain brittle fracture processes in sulfate-rich clay rock from the Gipskeuper formation in Switzerland. This rock type typically shows a heterogeneous rock fabric consisting of distinct clayey layers and stiff heterogeneities such as anhydrite layers, veins or nodules. The study showed that at low deviatoric stress, the failure behavior is dominated by the strength of the clayey matrix where microcracks are initiated. With increasing deviatoric stress or strain, growing microcracks eventually are arrested at anhydrite veins, and cracks develop either aligned with the interface between clayey layers and anhydrite veins, or penetrate anhydrite veins. These cracks often link micro-fractured regions in the specimen. This study also suggest that fracture localization in sulfate-rich clay rocks, which typically show a heterogeneous rock fabric, does not take place in the pre-peak range and renders unstable crack propagation less likely. Sulfate-rich clay rocks typically contain anhydrite veins at various scales. At the scale of a tunnel, anhydrite layers or veins may arrest growing fractures and prevent the disintegration of the rock mass. The rock mass may be damaged when the threshold stress for microcrack initiation is exceeded, thus promoting swelling by crystal growth in extension fractures, but the self-supporting capacity of the rock mass may be maintained rendering the possibility for rapidly propagating instability less likely.  相似文献   
47.
48.
High sedimentation rates (up to 12 cm/kyear) of laminated organic carbon-rich biogenic limestones in the Tarfaya Basin provide an unusually high (millennial) resolution record of the late Cenomanian oceanic anoxic event (OAE-2). The global positive carbon-isotope excursion across the Cenomanian–Turonian corresponds to 11 light/dark sedimentary cycles. We interpret these cycles as a response to orbital obliquity variation and estimate the duration of the complete excursion as 440 kyear or one long eccentricity cycle. On this timescale, the main increase in 13C values occurred over a short time interval of less than 20 kyear in the late Cenomanian and reached a first maximum approximately 15 kyear prior to the bulk (mainly coccoliths) 18O-derived sea surface maximum temperature that occurs coeval to the extinction of Rotalipora cushmani. Organic carbon-accumulation rates follow obliquity cycles, reaching a maximum approximately 10 kyear after the last occurrence of R. cushmani, then slowly decreasing during the early Turonian. Thus, the maximum temperature and the maximum organic carbon accumulation in the Tarfaya Basin lagged by at least 15 kyear behind the global carbon-isotope shift and a proposed reduction of atmospheric CO2 content. The climate change across the Cenomanian/Turonian boundary probably occurred independent of CO2 levels and may have been controlled by different greenhouse gases (water vapour and methane) and changes in ocean circulation (i.e., opening of the Equatorial Atlantic gateway)  相似文献   
49.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号