首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   7篇
测绘学   6篇
大气科学   26篇
地球物理   44篇
地质学   77篇
天文学   44篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   15篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   12篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   14篇
  2006年   2篇
  2005年   13篇
  2004年   7篇
  2003年   10篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
21.
The volume and the photosensitive area of next generation detectors of the numerous rarely occurring phenomena will greatly exceed the sizes of the current experiments. These phenomena include cosmic neutrinos, atmospheric neutrinos, long-baseline neutrino beams from accelerators, geo-neutrinos, geo-reactor neutrinos, and hypothetic proton decays. Similar requirements hold for a new type of a large scanning device for homeland security and nuclear proliferation control, and for the future widely accessible medical imaging devices. Photon detectors are the most important component of such detectors. Existing photosensors are based on vacuum tubes and dynode electron multipliers that are essentially hand-made, expensive and nearly impossible to produce in large enough quantities. Silicon detectors are too small for experiments requiring a very large photosensitive area. Our laboratory is developing novel detectors with a large photosensitive area that can be mass-produced, similar to large flat panel TV displays.  相似文献   
22.
23.
Numerical models constitute the most advanced physical-based methods for modeling complex ground water systems. Spatial and/or temporal variability of aquifer parameters, boundary conditions, and initial conditions (for transient simulations) can be assigned across the numerical model domain. While this constitutes a powerful modeling advantage, it also presents the formidable challenge of overcoming parameter uncertainty, which, to date, has not been satisfactorily resolved, inevitably producing model prediction errors. In previous research, artificial neural networks (ANNs), developed with more accessible field data, have achieved excellent predictive accuracy over discrete stress periods at site-specific field locations in complex ground water systems. In an effort to combine the relative advantages of numerical models and ANNs, a new modeling paradigm is presented. The ANN models generate accurate predictions for a limited number of field locations. Appending them to a numerical model produces an overdetermined system of equations, which can be solved using a variety of mathematical techniques, potentially yielding more accurate numerical predictions. Mathematical theory and a simple two-dimensional example are presented to overview relevant mathematical and modeling issues. Two of the three methods for solving the overdetermined system achieved an overall improvement in numerical model accuracy for various levels of synthetic ANN errors using relatively few constrained head values (i.e., cells), which, while demonstrating promise, requires further research. This hybrid approach is not limited to ANN technology; it can be used with other approaches for improving numerical model predictions, such as regression or support vector machines (SVMs).  相似文献   
24.
Water protection is one of the most important goals in environmental protection. The Clean Water Act in the USA and the Water Framework Directive (WFD) in Europe are the legal frameworks to facilitate the achievement of this goal. The question is raised of whether more information can be extracted from WFD-related groundwater data. To answer it, a methodology has been developed that is easy to use and could be implemented into official practice. A case study is presented in which the groundwater data of a sodic area in Austria (Seewinkel) is assessed. Eighteen parameters in groundwater sampled from 23 wells (1991–2011) were analyzed. With basic statistics, trend-, cluster-, Wilks’ λ and spatial sampling density analysis, local phosphorus and boron phenomena were described, along with the determining role of sulphate, groundwater flow, and the oxygen gradient in the area. As a final step, the spatial sampling density was determined. Regarding the current set of parameters, all the sampling sites are necessary and only in the case of certain parameters (Ca2+, Mg2+, K+, NO3 ?, pH) could one sampling site be abandoned. The methodology applied brings a new perspective to exploring groundwater data collected according to the requirements of the WFD.  相似文献   
25.
Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.  相似文献   
26.
27.
28.
The optimal sequencing of a multipurpose water supply system in the Hajduhátság region of Hungary is determined by dynamic programming. The goal function minimizes the present value of capital costs, operation costs, and economic losses due to water shortages. Future water requirements are considered to be random variables because of natural and forecasting uncertainties. The nonlinear optimization problem at each stage is equivalent to a readily solved game theoretical problem, the solution of which is straightforward. Sensitivity analysis performed with respect to economic losses, water requirements and discount rate, showed that optimal development and sequencing depend largely on the economic losses and the discount rate.  相似文献   
29.
Analytical expressions are derived for the variances of some types of the periodograms due to normal-distributed noise present in the data. The equivalence of the Jurkevich and the Warner and Robinson methods is proved. The optimum phase cell number of the Warner and Robinson method is given; this number depends on the data length, signal form and noise level. The results are illustrated by numerical examples.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号