首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   6篇
测绘学   8篇
大气科学   12篇
地球物理   36篇
地质学   52篇
海洋学   16篇
天文学   17篇
自然地理   24篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   15篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   4篇
  2014年   11篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
71.
In riser structural systems, the region where the riser is connected to the platform is critical due to the development of high stress levels. To reduce the stress concentration in this region, bend stiffeners and stress joints are used in order to provide a gradual stiffness transition between the riser and the platform. The present paper presents an optimization design approach for bend stiffeners and stress joints, using a slender beam procedure for the connection joint analysis and an evolution strategies multi-objective optimization algorithm. This approach produces similar results when compared to a finite element analysis of the complete riser, but with significant reduction of computational costs. Numerical examples are presented, showing the efficiency and robustness of the suggested methodology.  相似文献   
72.
The compaction of highly heterogeneous poroelastic reservoirs with the geology characterized by long‐range correlations displaying fractal character is investigated within the framework of the stochastic computational modelling. The influence of reservoir heterogeneity upon the magnitude of the stresses induced in the porous matrix during fluid withdrawal and rock consolidation is analysed by performing ensemble averages over realizations of a log‐normally distributed stationary random hydraulic conductivity field. Considering the statistical distribution of this parameter characterized by a coefficient of variation governing the magnitude of heterogeneity and a correlation function which decays with a power‐law scaling behaviour we show that the combination of these two effects result in an increase in the magnitude of effective stresses of the rock during reservoir depletion. Further, within the framework of a perturbation analysis we show that the randomness in the hydraulic conductivity gives rise to non‐linear corrections in the upscaled poroelastic equations. These corrections are illustrated by a self‐consistent recursive hierarchy of solutions of the stochastic poroelastic equations parametrized by a scale parameter representing the fluctuating log‐conductivity standard deviation. A classical example of land subsidence caused by fluid extraction of a weak reservoir is numerically simulated by performing Monte Carlo simulations in conjunction with finite elements discretizations of the poroelastic equations associated with an ensemble of geologies. Numerical results illustrate the effects of the spatial variability and fractal character of the permeability distribution upon the evolution of the Mohr–Coulomb function of the rock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
73.
In this work, applying general results from averaging theory, we find periodic orbits for a class of Hamiltonian systems H whose potential models the motion of elliptic galaxies.  相似文献   
74.
We study the energy distribution of hard gluons traversing a dense quark-gluon plasma by comparing various transverse momentum broadening rates q^(t) $$ \hat{q}(t) $$, using a probabilistic perturbative approach. These results were applied to address the thermalization problem in heavy ion collisions. Within the weak coupling model, thermalization follows a “bottom-up” process: early-formed high-energy partons emit low-energy gluons, leading to their equilibrium formation, creating a thermal bath that facilitates equilibrium in the high-energy sector. Under this scenario, we model the time dependencies of as a power-law , and assess the impact of on the distribution of hard gluons passing through the medium.  相似文献   
75.
Fernández  José  Pastén  César  Ruiz  Sergio  Leyton  Felipe 《Natural Hazards》2019,96(1):269-283
Natural Hazards - Destructive megathrust earthquakes, such as the 2015 Mw 8.3 Illapel event, frequently affect Chile. In this study, we assess the damage of the 2015 Illapel Earthquake in the...  相似文献   
76.
We study the applicability of a model order reduction technique to the solution of transport of passive scalars in homogeneous and heterogeneous porous media. Transport dynamics are modeled through the advection-dispersion equation (ADE) and we employ Proper Orthogonal Decomposition (POD) as a strategy to reduce the computational burden associated with the numerical solution of the ADE. Our application of POD relies on solving the governing ADE for selected times, termed snapshots. The latter are then employed to achieve the desired model order reduction. We introduce a new technique, termed Snapshot Splitting Technique (SST), which allows enriching the dimension of the POD subspace and damping the temporal increase of the modeling error. Coupling SST with a modeling strategy based on alternating over diverse time scales the solution of the full numerical transport model to its reduced counterpart allows extending the benefit of POD over a prolonged temporal window so that the salient features of the process can be captured at a reduced computational cost. The selection of the time scales across which the solution of the full and reduced model are alternated is linked to the Péclet number (P e), representing the interplay between advective and dispersive processes taking place in the system. Thus, the method is adaptive in space and time across the heterogenous structure of the domain through the combined use of POD and SST and by way of alternating the solution of the full and reduced models. We find that the width of the time scale within which the POD-based reduced model solution provides accurate results tends to increase with decreasing P e. This suggests that the effects of local-scale dispersive processes facilitate the POD method to capture the salient features of the system dynamics embedded in the selected snapshots. Since the dimension of the reduced model is much lower than that of the full numerical model, the methodology we propose enables one to accurately simulate transport at a markedly reduced computational cost.  相似文献   
77.
We compared the distribution and seasonal fluctuations in the aquatic biota in relation to chemical and physical water variables in the Altiplano watersheds of the Ascotán, Carcote and Huasco salars; Chungará and Cotacotani lakes; Isluga and Lauca Rivers and the Parinacota wetland. We sampled during the austral autumn–winter of 2006 and in the spring–summer of 2006–2007, using three sampling stations for each system. We used canonical correspondence analysis to establish relations between frequency of taxa and environmental variables.We demonstrate that the structure and composition of the aquatic biota in humid areas of the Altiplano is determined by physical and chemical variables of the water. The most relevant one is total nitrogen, which is also the limiting nutrient for phytoplankton production in tropical systems.Benthos and zooplankton showed significant associations with the set of environmental variables (Monte Carlo test, p<0.05); however, the association was not significant for phytoplankton. Lake Chungará showed the greatest variation in composition and abundance of zooplankton between autumn-winter and spring-summer, while in the Huasco salar the physical and chemical characteristics were related to the composition and abundance of the benthonic fauna. Thus, changes in the water volume of these systems would have repercussions in chemical and physical variables, altering the species assemblage and possibly the efficiency and stability of ecosystem functions.  相似文献   
78.
Chaotic advection is a novel approach that has the potential to enhance contact between an injected reagent and target contaminants, and thereby improve the effectiveness of in situ treatment technologies. One configuration that is capable of generating chaotic advection is termed the rotated potential mixing (RPM) flow. A conventional RPM flow system involves periodically reoriented dipole flow driven by transient switching of pressures at a series of radial wells. To determine whether chaotic advection can be engineered using such an RPM flow system, and to assess the consequent impact on the spatial distribution of a conservative tracer, a series of field-scale experiments were conducted. These experiments involved the injection of a tracer in the center of a circular array of wells followed by either mixing using an engineered RPM flow system to invoke chaotic advection, or by natural processes (advection and diffusion) as the control. Pressure fluctuations from the mixing tests using the RPM flow system showed consistent peak amplitudes during injection and extraction at a frequency corresponding to the switching time, suggesting that the target hydraulic behavior was achieved with the time-dependent flow field. The tracer breakthrough responses showed oscillatory behavior at all monitoring locations during the mixing tests which indicated that the desired RPM flow was generated. The presence of chaotic advection was supported by comparisons to observations from a previous laboratory experiment using RPM flow, and the Fourier spectrum of the temporal tracer data. Results from several quantitative metrics adopted to demonstrate field-scale evidence of chaotic advection showed that mixing led to improved lateral tracer spreading and approximately uniform concentrations across the monitoring network. The multiple lines of evidence assembled in this proof-of-concept study conclusively demonstrated that chaotic advection can be engineered at the field scale. This investigation is a critical step in the development of chaotic advection as a viable and efficient approach to enhance reagent delivery.  相似文献   
79.
80.
Stochastic Environmental Research and Risk Assessment - The Brazilian Interconnected Power System is hydro dominated and characterized by large reservoirs presenting multi-year regulation...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号