首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   4篇
测绘学   6篇
大气科学   13篇
地球物理   31篇
地质学   74篇
海洋学   15篇
天文学   48篇
自然地理   13篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   6篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   10篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1992年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1957年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
131.
132.
A MHD theory of combined Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities for a transition layer with two different scale lengths (Δ and δ for the variation of velocity/magnetic fields and density, respectively) is presented. The study is motivated by reports of magnetopauses with no low latitude boundary layer, in which a sharp density drop over a distance δ?Δ is observed (“pristine” magnetopauses (J. Geophys. Res. 101 (1996) 49). The theory ignores compressibility effects and applies to subsonic regions of the dayside magnetopause. The RT effect is included to account for temporary periods of acceleration of the magnetopause, caused by sudden changes of the solar wind dynamic pressure. For small wavelengths λ, such that δ?λ?Δ, a WKB solution shows that the velocity gradient operates, together with magnetic tensions, to attenuate or even stabilize the Rayleigh-Taylor instability within a certain wavelength range. An exact dispersion relation for flute modes, valid for all λ, in the form of a fourth order polynomial for the complex frequency ω, is obtained from a model with a constant velocity gradient, dV/dy within Δ, and with δ→0. Flute modes are possible because of the existence of bands of very small magnetic shear on the dayside magnetopause (J. Geophys. Res. 103 (1998) 6703). The exact solution allows for a study of the change of the action of the velocity gradient with λ from the long-λ range where dV/dy is KH destabilizing to the short-λ range where dV/dy produces a stabilizing effect. Both, the WKB approximation and the well known tangential discontinuity model (Δ→0) are recovered as limiting cases of the exact solution. Properties of the KH and RT instabilities, for different density ratios on either side of the magnetopause, are described. For flute modes, at very small λ the RT instability grows faster and becomes the dominant effect. However, it is shown that the growth rate remains bounded at a finite value as λ→0, when a theory with a finite δ model is considered. To study configurations with finite, arbitrary, δ/Δ ratios, the MHD perturbation equations are solved numerically, using hyperbolic tangent functions for both the density and velocity transitions across the magnetopause. To examine the influence of different δ/Δ ratios on the growth rates of KH and RT, calculations are performed for different δ/Δ, with and without acceleration, and for two different density ratios. It is found that the general features exhibited by the constant dV/dy model, are confirmed by these numerical solutions. The stability of pristine magnetopauses, and the possibility of observing some theoretical predictions during magnetopause crossings in ongoing missions, are discussed.  相似文献   
133.
Coastal shoreline hardening is intensifying due to human population growth and sea level rise. Prior studies have emphasized shoreline-hardening effects on faunal abundance and diversity; few have examined effects on faunal biomass and size structure or described effects specific to different functional groups. We evaluated the biomass and size structure of mobile fish and crustacean assemblages within two nearshore zones (waters extending 3 and 16 m from shore) adjacent to natural (native wetland; beach) and hardened (bulkhead; riprap) shorelines. Within 3 m from shore, the total fish/crustacean biomass was greatest at hardened shorelines, driven by greater water depth that facilitated access to planktivore (e.g., bay anchovy) and benthivore-piscivore (e.g., white perch) species. Small-bodied littoral-demersal species (e.g., Fundulus spp.) had greatest biomass at wetlands. By contrast, total biomass was comparable among shoreline types within 16 m from shore, suggesting the effect of shoreline hardening on fish biomass is largely within extreme nearshore areas immediately at the land/water interface. Shoreline type utilization was mediated by body size across all functional groups: small individuals (≤60 mm) were most abundant at wetlands and beaches, while large individuals (>100 mm) were most abundant at hardened shorelines. Taxonomic diversity analysis indicated natural shoreline types had more diverse assemblages, especially within 3 m from shore, although relationships with shoreline type were weak and sensitive to the inclusion/exclusion of crustaceans. Our study illustrates how shoreline hardening effects on fish/crustacean assemblages are mediated by functional group, body size, and distance from shore, with important applications for management.  相似文献   
134.
The 1.85 Ga Sudbury impact structure is one of the largest impact structures on Earth. Igneous bodies—the so‐called “Basal Onaping Intrusion”—occur at the contact between the Sudbury Igneous Complex (SIC) and the overlying Onaping Formation and occupy ~50% of this contact zone. The Basal Onaping Intrusion is presently considered part of the Onaping Formation, which is a complex series of breccias. Here, we present petrological and geochemical data from two drill cores and field data from the North Range of the Sudbury structure, which suggests that the Basal Onaping Intrusion is not part of the Onaping Formation. Our observations indicate that the Basal Onaping Intrusion crystallized from a melt and has a groundmass comprising a skeletal intergrowth of feldspar and quartz that points to simultaneous cooling of both components. Increasing grain size and decreasing amounts of clasts with increasing depth are general features of roof rocks of coherent impact melt rocks at other impact structures and the Basal Onaping Intrusion. Planar deformation features within quartz clasts of the Basal Onaping Intrusion are indicators for shock metamorphism and, together with the melt matrix, point to the Basal Onaping Intrusion as being an impact melt rock, by definition. Importantly, the contact between Granophyre of the SIC and Basal Onaping Intrusion is transitional and we suggest that the Basal Onaping Intrusion is what remains of the roof rocks of the SIC and, thus, is a unit of the SIC and not the Onaping Formation. We suggest henceforth that this unit be referred to as the “Upper Contact Unit” of the SIC.  相似文献   
135.
SARAL uses the same orbit as ERS and Envisat and can be used to extend inland water height time series derived from these missions. This article investigates the potential of SARAL for this application over the Great Lakes and the Amazon basin. SARAL/AltiKa is the first altimeter using Ka-band that is rarely influenced by ionospheric effects but susceptible for atmospheric water. Our investigations show clear waveform disruptions for SARAL due to precipitation. It is demonstrated that the quality of water heights improved when using alternative retracker products, for example, the ice-1 product. The improvement depends on the weather and yields up to 3.8 cm for wet conditions. The advantage of the smaller footprint of SARAL is demonstrated for land-water transitions where SARAL provides better water level heights up to 6 km to the lakeshore whereas Envisat is limited to about 11 km. SARAL provides also more reliable water level heights for narrow Amazon rivers than Envisat. Furthermore, the hooking effect is decreased for SARAL. Comparing water level time series of SARAL-only, Envisat-only, and multi-mission with in-situ data demonstrates that SARAL has the potential to extend Envisat long-term time series and to decrease the RMS by about 10% for large lakes and 40% for selected rivers.  相似文献   
136.
137.
Wyville Thomson Ridge Overflow Water (WTOW), which is the only part of the outflow from the Norwegian Sea not to directly enter the Iceland Basin, is shown to be a significant water mass in the northern Rockall Trough. It is found primarily at intermediate depths (600–1200 m) beneath the northward flowing warm Atlantic waters, and above recirculating Mediterranean influenced waters and Labrador Sea Water (LSW). The bottom of the WTOW layer can be identified by a mid-depth inflexion point in potential temperature–salinity plots. An analysis of historical data reveals that WTOW has been present in all but eight of the last 31 years at 57.5°N in the Rockall Trough. A denser component of WTOW below 1500 m has also been present, although it appears to be less persistent (12 out of the 31 years) and limited to the west of the section. The signature of intermediate WTOW was absent in two periods, the mid-1980s and early 1990s, both of which coincided with a freshening, and probable increase in volume, of LSW in the trough. Potential temperature–salinity diagrams from historical observations indicate that WTOW persists at least as far south as 55°N (and as far west as 20°W in the Iceland Basin) although its signature is quickly lost on leaving the Rockall Trough. We suggest that a transport of WTOW down the western side of the trough exists, with WTOW at intermediate depths entering the eastern trough either via a cyclonic recirculation, or as a result of eddy activity. Further, WTOW is seen on the Rockall–Hatton Plateau and in the deep channels connecting with the Iceland Basin, suggesting additional possible WTOW transport pathways. These suggested transport routes remain to be confirmed by further observational or modelling studies.  相似文献   
138.
 The 11 lateral lakes of Coeur d'Alene River valley in northern Idaho have received heavy metal contamination from over a century of upstream mining. The lateral lakes lie within the flood plain of the Coeur d'Alene River, and in their bottom sediments is preserved a stratigraphic record of the upstream mining operations. To characterize the contaminated sediments in the lateral lakes, sampling techniques, including the Livingston piston corer and the Huttenen freeze box, have been developed by Quaternary geologists to preserve the vertical stratigraphy in the samples. From 26 cm to over 55 cm of undisturbed tailing sediments, commonly with “varve-like” features, have been found in each of the lateral lakes, with maximum concentrations by weight of lead at 3.8%, zinc at 3.4%, arsenic at 340 mg/kg, cadmium at 120 mg/kg and mercury at 7 mg/kg. The contamination in the lakes appears to be restricted to the shallow subsurface and heavy metal concentrations generally drop to background levels within a meter of depth. Received: 22 May 1998 · Accepted: 21 September 1998  相似文献   
139.
140.
ABSTRACT

Throughout the last decade copula functions were widely used to assess a wide range of hydrological problems, often focusing on two distinct variables. In many of these studies it was ignored whether the two variables of interest actually occurred simultaneously (e.g. two annual maximum time series were analysed in a multivariate statistical framework). Here we introduce a novel approach to derive bivariate design events using copula functions allowing both simultaneous and non-simultaneous occurrence of the variables to be modelled. The methodology is exemplarily applied to assess the combined flood occurrence at the confluence of the rivers Rhine and Sieg (Germany). The results underline the validity of the methodology. Employing a hydrodynamic numerical model furthermore shows that commonly used statistical approaches to select a single design event out of a vast number of possible combinations can be critical for practical design purposes.
Editor Z.W. Kundzewicz; Associate editor S. Grimaldi  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号