首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25822篇
  免费   463篇
  国内免费   211篇
测绘学   520篇
大气科学   1939篇
地球物理   5189篇
地质学   9033篇
海洋学   2106篇
天文学   5978篇
综合类   47篇
自然地理   1684篇
  2021年   160篇
  2020年   197篇
  2019年   209篇
  2018年   497篇
  2017年   462篇
  2016年   565篇
  2015年   435篇
  2014年   606篇
  2013年   1211篇
  2012年   731篇
  2011年   1015篇
  2010年   874篇
  2009年   1219篇
  2008年   1052篇
  2007年   1053篇
  2006年   978篇
  2005年   818篇
  2004年   837篇
  2003年   798篇
  2002年   737篇
  2001年   688篇
  2000年   635篇
  1999年   571篇
  1998年   576篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   335篇
  1992年   309篇
  1991年   273篇
  1990年   303篇
  1989年   280篇
  1988年   234篇
  1987年   310篇
  1986年   257篇
  1985年   346篇
  1984年   383篇
  1983年   371篇
  1982年   335篇
  1981年   310篇
  1980年   312篇
  1979年   282篇
  1978年   311篇
  1977年   257篇
  1976年   261篇
  1975年   270篇
  1974年   228篇
  1973年   236篇
  1972年   154篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
931.
A 39-km-long deep seismic reflection profile recorded during two field campaigns in 1996 and 2002 provides a first detailed image of the deep crust at the eastern margin of the Eastern Alps (Austria). The ESE–WNW-trending, low-fold seismic line crosses Austroalpine basement units and extends approximately from 20 km west of the Penninic window group of Rechnitz to 60 km SSE of the Alpine thrust front.The explosive-source seismic data reveals a transparent shallow crust down to 5 km depth, a complexly reflective upper crust and a highly reflective lowermost crust. The upper crust is dominated by three prominent west-dipping packages of high-amplitude subparallel reflections. The upper two of these prominent packages commence at the eastern end of the profile at about 5 and 10 km depth and are interpreted as low-angle normal shear zones related to the Miocene exhumation of the Rechnitz metamorphic core complex. In the western portion of the upper crust, east-dipping and less significant reflections prevail. The lowermost package of these reflections is suggested to represent the overall top of the European crystalline basement.Along the western portion of the line, the lower crust is characterised by a 6–8-km-thick band of high-amplitude reflection lamellae, typically observed in extensional provinces. The Moho can be clearly defined at the base of this band, at approximately 32.5 km depth. Due to insufficient signal penetration, outstanding reflections are missing in the central and eastern portion of the lower crust. We speculate that the result of accompanying gravity measurements and lower crustal sporadic reflections can be interpreted as an indication for a shallower Moho in the east, preferable at about 30.5 km depth.The high reflectivity of the lowermost part of the lower crust and prominent reflection packages in the upper crust, the latter interpreted to represent broad extensional mylonite zones, emphasises the latest extensional processes in accordance with eastward extrusion.  相似文献   
932.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
933.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
934.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
935.
The elemental (concentration of organic carbon, atomic H/C and C/N ratios), isotopic (δ13C values of organic matter) and molecular (predominant n-alkane chain length and carbon preference index (CPI)) organic components were measured for 600 samples taken from a 107-m long core from the Padul Basin (Andalusia, Spain). The record runs from the Lower Pleistocene (ca. 1 Ma B.P.) to the mid-Holocene (ca. 4.5 ka B.P.) with, in general, little diagenesis (removal of components). Two markedly different hydrogeological scenarios were interpreted: (1) From ca. 1 Ma to ca. 400 ka B.P. run-off recharge was significant and water depths were greater (lacustrine scenario). From ca. 400 to 4.5 ka B.P., the Padul Basin became a peat bog s.s. with the major water input coming from groundwater inflow. From ca. 400 to ca. 180 ka B.P. alternating episodes with either predominant grasses, trees or aquatic macrophytes which were linked to wet/dry phases, took place. An important deglaciation episode has been interpreted to occur between ca. 180 and 170 ka B.P. The global climatic changes occurring from ca. 170 to 25 ka B.P. were not recorded in the proxies, though they do show important variations linked to the Last Glacial Maximum and the beginning of the Holocene (ca. 25–10 ka B.P.): (2) Cold phases coexisting with dry periods produced the recession of forests and the development of grasses. After these periods, as both temperature and precipitation increased, forests expanded and the water level, linked to thaw, rose, especially at ca. 20 ka B.P. Few changes occurred during the Holocene, although there were short alternations between wet and dry episodes. Overall, the techniques applied proved to be excellent palaeoenvironmental proxies for studying the basin’s palaeoclimatological and palaeohydrological evolution.  相似文献   
936.
The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism.  相似文献   
937.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   

938.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   

939.
Mnemiopsis leidyi, native to America, Invaded the Caspian Sea in 1999. By the end of 2000, the entire sea was accupied with them. In parallel, a sharp decline in pelagic fish such accurrred.This survey was studied the relationship between the M. leidyi and this decline. Dietary analysis was conducted on anchovy sprat (Clupeonnela engrauliformis) and M. leidyi from August 2001 to October 2002 in the coastal water in the southern parts of Caspian Sea, in Iran. M. leidyi was caught by plankton net, (the mesh size ~5 mm), at three depth at 5, 10 and 15m. Sprat was caught by fisheries boat at Babolasar fishery harbor. Samples were not fixed in M. leidyi common fixative, 96% Ethanol were used. The Schoener index analysis reflected a similar diet composition of both species, with an critical level of overlap (>89 in Babolsar samples and >84 in Noushahar samples). This competition is one of the reasons for the decline of anchovy sprat. also, the results show M. leidyi is feeding on fish eggs, but effects of this factor on anchovy population is less than feeding competition. Controlling of M. leidyi population is reducing the pressure of its invasion and the effective approach is introduces a predator to the Caspian Sea.  相似文献   
940.
Deep seismic reflection data across the Archaean Eastern Goldfields Province, northeastern Yilgarn Craton, Western Australia, have provided information on its crustal architecture and on several of its highly mineralised belts. The seismic reflection data allow interpretation of several prominent crustal scale features, including an eastward thickening of the crust, subdivision of the crust into three broad layers, the presence of a prominent east dip to the majority of the reflections and the interpretation of three east-dipping crustal-penetrating shear zones. These east-dipping shear zones are major structures that subdivide the region into four terranes. Major orogenic gold deposits in the Eastern Goldfields Province are spatially associated with these major structures. The Laverton Tectonic Zone, for example, is a highly mineralised corridor that contains several world-class gold deposits plus many smaller deposits. Other non crustal-penetrating structures within the area do not appear to be as well endowed metallogenically as the Laverton structure. The seismic reflection data have also imaged a series of low-angle shear zones within and beneath the granite–greenstone terranes. Where the low-angle shear zones intersect the major crustal-penetrating structures, a wedge shaped geometry is formed. This geometry forms a suitable fluid focusing wedge in which upward to subhorizontal moving fluids are focused and then distributed into the nearby complexly deformed greenstones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号