首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
  国内免费   1篇
测绘学   3篇
大气科学   45篇
地球物理   40篇
地质学   53篇
海洋学   8篇
天文学   16篇
自然地理   3篇
  2016年   5篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   6篇
  2008年   12篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1994年   3篇
  1993年   2篇
  1989年   5篇
  1985年   3篇
  1981年   2篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1965年   1篇
  1963年   3篇
  1962年   4篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1952年   2篇
  1950年   1篇
  1948年   1篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
  1936年   2篇
  1935年   3篇
  1934年   1篇
  1933年   1篇
  1930年   1篇
  1929年   1篇
  1925年   1篇
  1922年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
161.
162.
The reason for the preparation and characterization of the novel antibacterial silver/vermiculites (Ag/V) together with the silver/montmorillonites (Ag/M) was that the information on the vermiculite structure change and stability of Ag/V in water as well as its effect on bacteria are sporadic. The vermiculite (V), (Si3.02Al0.98)IV (Mg2.27Al0.12Ti0.07)VI O10(OH)2 Ca0.09Na0.21K0.50 from West China and montmorillonite (M), (Si3.96Al0.04)IV (Al1.20Mg0.42Ti0.02)VI O10 (OH)2Ca0.15Na0.14K0.08 from Ivan?ice (Czech Republic), fraction <0.4 μm were the starting clay materials for sample preparation. The samples V1 and M1 were prepared via reaction of the V and M with the 0.01 mol L−1 AgNO3 aqueous solution. The samples V2 and M2 were treated with the aqueous solution of AgNO3 for two times. The cation exchange and reduced metallic silver on M1 and V1 evoked the specific surface area (SSA) diminution, the mean particle-size diameter extension and appearance of micropores with radius (<0.4 nm). Repeated silver cation exchange in M2 and V2 reduced particle size, increased slightly SSA and micropores with radius of 0.4-0.5 nm. Samples Ag/V and Ag/M showed higher content of pores with radius 0.5-1.0 nm than original V and M. The Ag concentration was found higher in Ag/V than in Ag/M and higher in repeatedly treated samples: 0.9 wt.% Ag in V1, 1.4 wt.% Ag in V2, 0.6 wt.% Ag in M1 and 1.0 wt.% Ag in M2. Vermiculite structure consisting of the hydrated interstratified phases and the mica-like phase changed to the cation-one-zero layer hydrate interstratification structure in V1 and to the random of two-one layer hydrate interstratifications in V2. Infrared and Mössbauer spectroscopy revealed no changes in the structure of the clay minerals that could be related directly to the sorption and crystallization of silver. Transmission electron microscopy showed that the silver nanoparticles size distribution was much narrower for the samples Ag/M than for Ag/V. The mean size of the Ag particles was between 40 and 50 nm. Although the Ag nanoparticles did not adhere sufficiently at the clay minerals surface and migrated moderately into water, all samples under study were approved to be effective inhibitors of the bacterial growth persisting for the whole testing period of 6 days. Silver/vermiculite was antimicrobial more efficient against Klebsiella pneumoniae and Pseudomonas aeruginosa than silver/montmorillonite.  相似文献   
163.
For the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), the recent version of the coupled atmosphere/ocean general circulation model (GCM) of the Max Planck Institute for Meteorology has been used to conduct an ensemble of transient climate simulations These simulations comprise three control simulations for the past century covering the period 1860–2000, and nine simulations for the future climate (2001–2100) using greenhouse gas (GHG) and aerosol concentrations according to the three IPCC scenarios B1, A1B and A2. For each scenario three simulations were performed. The global simulations were dynamically downscaled over Europe using the regional climate model (RCM) REMO at 0.44° horizontal resolution (about 50 km), whereas the physics packages of the GCM and RCM largely agree. The regional simulations comprise the three control simulations (1950–2000), the three A1B simulations and one simulation for B1 as well as for A2 (2001–2100). In our study we concentrate on the climate change signals in the hydrological cycle and the 2 m temperature by comparing the mean projected climate at the end of the twenty-first century (2071–2100) to a control period representing current climate (1961–1990). The robustness of the climate change signal projected by the GCM and RCM is analysed focussing on the large European catchments of Baltic Sea (land only), Danube and Rhine. In this respect, a robust climate change signal designates a projected change that sticks out of the noise of natural climate variability. Catchments and seasons are identified where the climate change signal in the components of the hydrological cycle is robust, and where this signal has a larger uncertainty. Notable differences in the robustness of the climate change signals between the GCM and RCM simulations are related to a stronger warming projected by the GCM in the winter over the Baltic Sea catchment and in the summer over the Danube and Rhine catchments. Our results indicate that the main explanation for these differences is that the finer resolution of the RCM leads to a better representation of local scale processes at the surface that feed back to the atmosphere, i.e. an improved representation of the land sea contrast and related moisture transport processes over the Baltic Sea catchment, and an improved representation of soil moisture feedbacks to the atmosphere over the Danube and Rhine catchments.  相似文献   
164.
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Niño/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.  相似文献   
165.
Actions to manage carbon dioxide (and other greenhouse gas) emissions at regional and local scales take place amid multiple requirements, participants, and agents. To address and solve tensions that emerge from diverse objectives and stakeholder needs, participatory decision processes and information tools are required. This paper explores how regional carbon budget information can contribute to the broader goal of holistic, adaptive regional development. We sketch the characteristics of a novel integrative framework for adaptive carbon management in the context of multiple criteria. An ex-post case study on carbon mitigation from Chiapas, Mexico, demonstrates challenges and trade-offs in a real-world setting.  相似文献   
166.
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
T. J. RaddatzEmail:
  相似文献   
167.
We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE?2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2?K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2?K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative to 1990, with further large reductions needed beyond that to achieve the E1 concentrations pathway. Negative allowable anthropogenic carbon emissions at and beyond 2100 cannot be ruled out for the E1 scenario. There is self-consistency between the multi-model ensemble of allowable anthropogenic carbon emissions and the E1 scenario emissions from IMAGE?2.4.  相似文献   
168.
The main purpose of this paper was the examination of the Cassegrain-spectrograph of the 2-m-universaltelescope at Tautenburg for investigations of magnetic stars. Therefore from 26 spectrograms of the well known magnetically variable star α2CVn taken with a reciprocal linear dispersion of 10 Å/mm variations of radial velocity and magnetic field strength for some lines of Eu II, Cr II, Si II, Mg II were determined. The results agree well with those of Babcock [5] and Struve and Swings [2], derived from spectrograms of higher dispersion. The large variation in the radial velocity of Eu II and Cr II is confirmed. In the oblique rotator model this requires a very strong concentration of Eu II at the poles and of Cr II at the equator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号