首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   83篇
  国内免费   44篇
测绘学   40篇
大气科学   191篇
地球物理   409篇
地质学   707篇
海洋学   142篇
天文学   256篇
综合类   4篇
自然地理   173篇
  2023年   5篇
  2022年   10篇
  2021年   30篇
  2020年   33篇
  2019年   22篇
  2018年   49篇
  2017年   42篇
  2016年   75篇
  2015年   48篇
  2014年   70篇
  2013年   130篇
  2012年   58篇
  2011年   99篇
  2010年   88篇
  2009年   96篇
  2008年   94篇
  2007年   104篇
  2006年   96篇
  2005年   72篇
  2004年   66篇
  2003年   52篇
  2002年   53篇
  2001年   44篇
  2000年   34篇
  1999年   39篇
  1998年   25篇
  1997年   27篇
  1996年   41篇
  1995年   18篇
  1994年   16篇
  1993年   19篇
  1992年   10篇
  1991年   21篇
  1990年   22篇
  1989年   19篇
  1988年   8篇
  1987年   15篇
  1986年   19篇
  1985年   14篇
  1984年   11篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   16篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1922条查询结果,搜索用时 898 毫秒
211.
In this paper we discuss the relevance, and possible scientific gains, which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.  相似文献   
212.
This study maps the geographic extent of intermittent and seasonal snow cover in the western United States using thresholds of 2000–2010 average snow persistence derived from moderate resolution imaging spectroradiometer snow cover area data from 1 January to 3 July. Results show seasonal snow covers 13% of the region, and intermittent snow covers 25%. The lower elevation boundaries of intermittent and seasonal snow zones increase from north-west to south-east. Intermittent snow is primarily found where average winter land surface temperatures are above freezing, whereas seasonal snow is primarily where winter temperatures are below freezing. However, temperatures at the boundary between intermittent and seasonal snow exhibit high regional variability, with average winter seasonal snow zone temperatures above freezing in west coast mountain ranges. Snow cover extent at peak accumulation is most variable at the upper elevations of the intermittent snow zone, highlighting the sensitivity of this snow zone boundary to climate conditions.  相似文献   
213.
214.
215.
216.
217.
An analysis of the dynamics of the flow over a street canyon immersed in an atmospheric boundary layer is presented, using particle image velocimetry measurements in a wind tunnel. Care was taken to generate a 1:200 model scale urban type boundary layer that is correctly scaled to the size of the canyon buildings. Using proper orthogonal decomposition (POD) of the velocity field and conditional averaging techniques, it is first shown that the flow above the opening of the canyon consists of a shear layer separating from the upstream obstacle, animated by a coherent flapping motion and generating large-scale vortical structures. These structures are alternately injected into the canyon or shed off the obstacle into the outer flow. It is shown that unsteady fluid exchanges between the canyon and the outer flow are mainly driven by the shear layer. Finally, using POD, the non-linear interaction between the large-scale structures of the oncoming atmospheric boundary layer and the flow over the canyon is demonstrated.  相似文献   
218.
A step-up street canyon is a characteristic urban element composed of two buildings in which the height of the upwind building ( $H_\mathrm{u}$ ) is less than the height of the downwind building ( $H_\mathrm{d}$ ). Here, the effect of canyon geometry on the flow structure in isolated step-up street canyons is investigated through isothermal wind-tunnel measurements. The measurements were acquired along the vertical symmetry plane of model buildings using two-dimensional particle image velocimetry (PIV) for normal approach flow. The building-height ratios considered were: $H_\mathrm{d}/ H_\mathrm{u} \approx 3$ , and $H_\mathrm{d}/ H_\mathrm{u} \approx 1.67$ . For each building-height ratio, the along-wind lengths (L) of the upwind and downwind buildings, and the street-canyon width (S) were kept constant, with $L \approx S$ . The cross-wind widths (W) of the upwind and downwind buildings were varied uniformly from $W/S \approx 1$ through $W/S \approx 4$ , in increments of $W/S \approx 1$ . The objective of the work was to characterize the changes in the flow structure in step-up canyons as a function of W/S, for fixed L, S, and $H_\mathrm{d}/H_\mathrm{u}$ values. The results indicate that the in-canyon flow structure does not vary significantly for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ for the W/S values considered. Qualitatively, for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ , the upwind building behaves as an obstacle in the upwind cavity of the downwind building. In contrast, the flow patterns observed for the $H_\mathrm{d}/H_\mathrm{u} \approx 1.67$ configurations are unique and counter-intuitive, and depend strongly on building width (W/S). For $W/S \approx 1$ and $W/S \approx 2$ , the effect of lateral flow into the canyon is so prominent that even the mean flow patterns are highly ambiguous. For $W/S \approx 3$ and 4, the flow along the vertical symmetry plane is more shielded from the lateral flow, and hence a stable counter-rotating vortex pair is observed in the canyon. In addition to these qualitative features, a quantitative analysis of the mean flow field and turbulence stress field is presented.  相似文献   
219.
Similarity Scaling Over a Steep Alpine Slope   总被引:5,自引:5,他引:0  
In this study, we investigate the validity of similarity scaling over a steep mountain slope (30–41 $^\circ $ ). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10 % required for the applicability of Monin–Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with $z/\varLambda $ , where $z$ is the measurement height and $\varLambda (z)$ the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with $z/\varLambda $ under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surface.  相似文献   
220.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号