首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1634篇
  免费   65篇
  国内免费   29篇
测绘学   39篇
大气科学   192篇
地球物理   360篇
地质学   597篇
海洋学   131篇
天文学   248篇
综合类   4篇
自然地理   157篇
  2023年   5篇
  2022年   9篇
  2021年   31篇
  2020年   33篇
  2019年   21篇
  2018年   48篇
  2017年   40篇
  2016年   74篇
  2015年   45篇
  2014年   66篇
  2013年   110篇
  2012年   54篇
  2011年   98篇
  2010年   84篇
  2009年   91篇
  2008年   92篇
  2007年   96篇
  2006年   96篇
  2005年   62篇
  2004年   63篇
  2003年   48篇
  2002年   47篇
  2001年   40篇
  2000年   32篇
  1999年   36篇
  1998年   23篇
  1997年   20篇
  1996年   19篇
  1995年   16篇
  1994年   12篇
  1993年   16篇
  1992年   7篇
  1991年   17篇
  1990年   15篇
  1989年   15篇
  1987年   13篇
  1986年   17篇
  1985年   8篇
  1984年   5篇
  1983年   14篇
  1982年   12篇
  1981年   14篇
  1980年   12篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1728条查询结果,搜索用时 0 毫秒
101.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
102.
Atmospheric dimethyl sulfide (DMS) and sulfur dioxide (SO2) concentrations were measured at Baring Head, New Zealandduring February and March 2000. Anti-correlated DMS and SO2 diurnalcycles, consistent with the photochemical production of SO2 from DMS, were observed in clean southerly air off the ocean. The data is used to infer a yield of SO2 from DMS oxidation. The estimated yields are highly dependent on assumptions about the DMS oxidation rate. Fitting the measured data in a photochemical box model using model-generated OH levels and the Hynes et al. (1986) DMS + OH rate constant suggests that theSO2 yield is 50–100%, similar to current estimates for the tropical Pacific.However, the observed amplitude of the DMS diurnal cycle suggests that the oxidation rate is higher than that used by the model, and therefore, that theSO2 yield is lower in the range of 20–40%.  相似文献   
103.
Very few attempts have so far been made to quantify the momentum and turbulent kinetic energy (TKE) budgets within real urban canopies. In this study, sonic anemometer data obtained during the Joint Urban 2003 field campaign in Oklahoma City, U.S.A. were used for calculating the momentum and TKE budgets within a real-world urban street canyon. Sonic anemometers were deployed on multiple towers in the lower half of the canyon. Gradients in all three principal directions were included in the analyses. The storage and buoyancy terms were found to have negligible contributions to both the momentum and TKE budgets. The momentum budgets were generally found to be more complex than a simple balance of two physical processes. The horizontal terms were found to have significant and sometimes dominant contributions to the momentum and TKE budgets.  相似文献   
104.
Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during the warm early Cenozoic era, when Antarctica was ice-free, the Drake Passage was closed. Instead, at that time, the separation of North and South America provided a tropical seaway between the Atlantic and Pacific that remained open until the Isthmus of Panama formed in the relatively recent geological past. Ocean circulation models have previously been used to explore the individual impacts of the Drake Passage and the Panama Seaway, but rarely have the two gateways been considered together, and most explorations have used very simple atmospheric models. Here we use a coupled ocean–ice–atmosphere model (GFDL’s CM2Mc), to simulate the impacts of a closed Drake Passage both with and without a Panama Seaway. We find that the climate response to a closed Drake Passage is relatively small when the Panama Seaway is absent, similar to prior studies, although the coupling to a dynamical atmosphere does increase the temperature change. However, with a Panama Seaway, closing Drake Passage has a much larger effect, due to the cessation of deep water formation in the northern hemisphere. Both gateways alter the transport of salt by ocean circulation, with the Panama Seaway allowing fresh Pacific water to be imported to the North Atlantic, and the Drake Passage preventing the flow of saline subtropical water to the circum-Antarctic, a flow that is particularly strong when the Panama Seaway is open. Thus, with a Panama Seaway and a closed Drake Passage, the Southern Ocean tends to be relatively salty, while the North Atlantic tends to be relatively fresh, such that the deep ocean is ventilated from the circum-Antarctic. Ensuing changes in the ocean heat transport drive a bi-polar shift of surface ocean temperatures, and the Intertropical Convergence Zone migrates toward the warmer southern hemisphere. The response of clouds to changes in surface ocean temperatures amplifies the climate response, resulting in temperature changes of up to 9 °C over Antarctica, even in the absence of land-ice feedbacks. These results emphasize the importance of tectonic gateways to the climate history of the Cenozoic, and support a role for ocean circulation changes in the glaciation of Antarctica.  相似文献   
105.
ABSTRACT

Urban areas presently consume around 75% of global primary energy supply, which is expected to significantly increase in the future due to urban growth. Having sustainable, universal energy access is a pressing challenge for most parts of the globe. Understanding urban energy consumption patterns may help to address the challenges to urban sustainability and energy security. However, urban energy analyses are severely limited by the lack of urban energy data. Such datasets are virtually non-existent for the developing countries. As per current projections, most of the new urban growth is bound to occur in these data-starved regions. Hence, there is an urgent need of research methods for monitoring and quantifying urban energy utilization patterns. Here, we apply a data-driven approach to characterize urban settlements based on their formality, which is then used to assess intra-urban urban energy consumption in Johannesburg, South Africa; Sana’a, Yemen; and Ndola, Zambia. Electricity is the fastest growing energy fuel. By analyzing the relationship between the settlement types and the corresponding nighttime light emission, a proxy of electricity consumption, we assess the differential electricity consumption patterns. Our study presents a simple and scalable solution to fill the present data void to understand intra-city electricity consumption patterns.  相似文献   
106.
 In this paper, two approaches for measuring residential group preferences, based on the method of Hierarchical Information Integration (HII), are compared. In particular, the hypothesis that group-based preference models estimated from integrated HII experiments better predict group preferences than part individual-based group models estimated from classical HII experiments is tested. To that effect, the models' ability to predict group preferences for new residential alternatives is compared in a study of residential preferences of co-ops. Results indicate that integrated HII group experiments indeed result in better predictions of residential preferences.  相似文献   
107.
Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.  相似文献   
108.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
110.
A new mesh refinement strategy for generating high quality unstructured meshes of the Northwestern European continental shelf, the continental slope and the neighbouring ocean is presented. Our objective is to demonstrate the ability of anisotropic unstructured meshes to adequately address the challenge of simulating the hydrodynamics occurring in these three regions within a unique mesh. The refinement criteria blend several hydrodynamic considerations as the tidal wave propagation on the continental shelf and the hydrostatic consistency condition in steep areas. Several meshes illustrate both the validity and the efficiency of the refinement strategy. The selection of the refinement parameters is discussed. Finally, an attempt is made to take into account tidal ellipses, providing another cause for anisotropy in the mesh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号