首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6399篇
  免费   367篇
  国内免费   32篇
测绘学   168篇
大气科学   698篇
地球物理   1682篇
地质学   2529篇
海洋学   335篇
天文学   1088篇
综合类   28篇
自然地理   270篇
  2024年   20篇
  2023年   32篇
  2022年   46篇
  2021年   124篇
  2020年   141篇
  2019年   105篇
  2018年   305篇
  2017年   318篇
  2016年   417篇
  2015年   299篇
  2014年   360篇
  2013年   506篇
  2012年   404篇
  2011年   365篇
  2010年   343篇
  2009年   360篇
  2008年   249篇
  2007年   202篇
  2006年   192篇
  2005年   154篇
  2004年   164篇
  2003年   125篇
  2002年   126篇
  2001年   102篇
  2000年   87篇
  1999年   73篇
  1998年   75篇
  1997年   99篇
  1996年   57篇
  1995年   70篇
  1994年   68篇
  1993年   43篇
  1992年   31篇
  1991年   35篇
  1990年   60篇
  1989年   28篇
  1988年   22篇
  1987年   43篇
  1986年   28篇
  1985年   34篇
  1984年   38篇
  1983年   32篇
  1982年   34篇
  1981年   40篇
  1980年   19篇
  1979年   25篇
  1978年   20篇
  1977年   23篇
  1974年   17篇
  1973年   21篇
排序方式: 共有6798条查询结果,搜索用时 15 毫秒
971.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   
972.
We advance a principle directed to assigning numerical values to free parameters usually present in inversion methods. It may be formulated as: ‘Optimum estimates of free parameters in an inversion procedure must lead, in tests using synthetic data, to solutions whose geometrical expression reflects the main qualitative or semiquantitative geological characteristic of the study area.’ To this end, the interpreter should (i) specify a typical anomalous source geometry which incorporates the most relevant geological information for the study area, (ii) compute the corresponding gravity anomaly and (iii) invert the anomaly for the source geometry finding the numerical values of the free parameters that lead to a solution closest to the typical source. Application of the above methodology to synthetic and real data from the basement relief of a rift basin has asserted its efficacy.  相似文献   
973.
High-resolution multibeam bathymetric data and acoustic sub-bottom profiles were recently collected in Grand Lake (Labrador), one of the deepest lake basins in eastern North America, to reconstruct: (1) the retreat of the Laurentide Ice Sheet (LIS) west of Lake Melville and (2) the history of sedimentation since deglaciation in this 54 km-long, 3 km-wide fjord-lake. Our results provide a morphostratigraphical framework that brings new insights to the style and pattern of retreat of the LIS in the region, as well as deglacial and postglacial sedimentary dynamics. Terrestrial glacial lineations observed on a digital elevation model (DEM) provide evidence of a previously undocumented ice stream in the Grand Lake area. This newly mapped ice stream suggests that the calving bay formed in Lake Melville triggered a reorganization of the regional drainage pattern of the LIS. The sedimentary infill of Grand Lake consists of a sequence of deglacial to postglacial sediments that contain deposits related to a series of mass movements. The 8.2 cal ka BP cold event is recorded in Grand Lake by a series of closely spaced moraines deposited at the outlet of the fjord-lake to form a morainic complex similar to the Cockburn morainic complex on Baffin Island. During deglaciation, a dense dendritic network of proglacial gullies incised into the steep sidewalls of the lake. Since deglaciation, paraglacial and postglacial sedimentation has led to the deposition of large prograding deltas at the fjord head, where density currents remain active today and have formed a series of sediment waves on the frontal slopes and a prodeltaic environment. © 2019 John Wiley & Sons, Ltd.  相似文献   
974.
Cosmogenic nuclide dating of glacial landforms may lead to ambiguous results for ice retreat histories. The persistence of significant cosmogenic concentrations inherited from previous exposure may increase the apparent exposure ages for polished bedrocks affected by limited erosion under ice and for erratic boulders transported by glaciers and previously exposed in high-altitude rock walls. In contrast, transient burying by moraines, sediments and snow decreases the apparent exposure age. We propose a new sampling strategy, applied to four sites distributed in the Arc and Arve valleys in the Western Alps, to better constrain the factors that can bias exposure ages associated with glacial processes. We used the terrestrial cosmogenic nuclide 10Be (TCN) to estimate the exposure time from paired sampling of depth profiles in polished bedrock and on overlying erratic boulders. For a given sampling site, the exposure ages for both the polished bedrock and boulder are expected to be the same. However, in six cases out of seven, boulders had significantly higher 10Be surface concentrations than those of the associated polished surfaces. In present and past glacial processes, the 10Be distribution with depth for boulders and bedrocks implies the presence of an inheritance concentration of 10Be. Our study suggests that 10Be concentrations in erratic boulders and in polished bedrocks provide maximum and minimum exposure ages of the glacial retreat, respectively. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
975.
Image network geometry, including the number and orientation of images, impacts the error, coverage, and processing time of 3D terrain mapping performed using structure-from-motion and multiview-stereo (SfM-MVS). Few studies have quantified trade-offs in error and processing time or ways to optimize image acquisition in diverse topographic conditions. Here, we determine suitable camera locations for image acquisition by minimizing the occlusion produced by topography. Viewshed analysis is used to select the suitable images, which requires a preliminary digital elevation model (DEM), potential camera locations, and sensor parameters. One aerial and two ground-based image collections were used to analyse differences between SfM-MVS models produced using: (1) all available images (ALL); (2) images selected using conventional methods (CON); and (3) images selected using the viewshed analysis (VIEW). The resulting models were compared with benchmark point clouds acquired by a terrestrial laser scanner (TLS) and TLS-derived DEMs. The VIEW datasets produced denser point clouds (28–32% more points) and DEMs with up to 66% reduction in error compared with CON datasets due to reduction of gaps in the DEM. VIEW datasets reduced processing time by 37–76% compared with ALL, with no reduction in coverage or increase in error. DEMs produced with ALL and VIEW datasets had similar slope and roughness, while slight differences that may be locally important were observed for the CON dataset. The new method helps optimize SfM-MVS image collection strategies that significantly reduce the number of images required with minimal loss in coverage or accuracy over complex surfaces. © 2020 John Wiley & Sons, Ltd.  相似文献   
976.
Rapid water level rise due to climate change has the potential to remobilize loose sediments along shorelines and increase the turbidity of nearshore waters, thereby impacting water quality and aquatic ecosystem health. Siling Lake is one of the largest and most rapidly expanding lakes on the Tibetan Plateau. Between 2000 and 2017, this lake experienced an increase in water level of about 8 m and a doubling in water turbidity. Here, using this lake as a study site, we used a wave model and high-resolution remote sensing of turbidity (Landsat-8) to assess the potential connection between water-level rise, enhanced wind-driven sediment resuspension and water turbidity. Our analysis revealed that strong bottom shear stresses triggered by wind-generated waves over newly flooded areas were related to an increase in water turbidity. The spatial variability of Siling Lake turbidity showed a strong dependence on local wind characteristics and fetch. Two factors combined to drive the increase in turbidity: (1) high wave energy leading to high bottom shear stresses, and (2) flooding of unvegetated shallow areas. Using a new relationship between wave energy and turbidity developed here, we expect the increase in turbidity of Siling Lake to taper off in the near future due to the steep landscape surrounding the lake that will prevent further flooding. Our results imply that rising water levels along the coast are not only expected to influence terrestrial ecosystems but could also change water quality. The methodology presented herein could be applied to other shorelines affected by a rapid increase in water level. © 2020 John Wiley & Sons, Ltd.  相似文献   
977.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
978.
Soil erosion is one of the most important environmental problems distributed worldwide. In the last decades, numerous studies have been published on the assessment of soil erosion and the related processes and forms using empirical, conceptual and physically based models. For the prediction of the spatial distribution, more and more sophisticated stochastic modelling approaches have been proposed – especially on smaller spatial scales such as river basins. In this work, we apply a maximum entropy model (MaxEnt) to evaluate badlands (calanchi) and rill–interrill (sheet erosion) areas in the Oltrepo Pavese (Northern Apennines, Italy). The aim of the work is to assess the important environmental predictors that influence calanchi and rill–interrill erosion at the regional scale. We used 13 topographic parameters derived from a 12 m digital elevation model (TanDEM-X) and data on the lithology and land use. Additional information about the vegetation is introduced through the normalized difference vegetation index based on remotely sensed data (ASTER images). The results are presented in the form of susceptibility maps showing the spatial distribution of the occurrence probability for calanchi and rill–interrill erosion. For the validation of the MaxEnt model results, a support vector machine approach was applied. The models show reliable results and highlight several locations of the study area that are potentially prone to future soil erosion. Thus, coping and mitigation strategies may be developed to prevent or fight the soil erosion phenomenon under consideration. © 2020 John Wiley & Sons, Ltd.  相似文献   
979.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   
980.
The porous near-surface layer of the Earth's crust – the critical zone – constitutes a vital reservoir of water for ecosystems, provides baseflow to streams, guides recharge to deep aquifers, filters contaminants from groundwater, and regulates the long-term evolution of landscapes. Recent work suggests that the controls on regolith thickness include climate, tectonics, lithology, and vegetation. However, the relative paucity of observations of regolith structure and properties at landscape scales means that theoretical models of critical zone structure are incompletely tested. Here we present seismic refraction and electrical resistivity surveys that thoroughly characterize subsurface structure in a small catchment in the Santa Catalina Mountains, Arizona, USA, where slope-aspect effects on regolith structure are expected based on differences in vegetation. Our results show a stark contrast in physical properties and inferred regolith thickness on opposing slopes, but in the opposite sense of that expected from environmental models and observed vegetation patterns. Although vegetation (as expressed by normalized difference vegetation index [NDVI]) is denser on the north-facing slope, regolith on the south-facing slope is four times thicker (as indicated by lower seismic velocities and resistivities). This contrast cannot be explained by variations in topographic stress or conventional hillslope morphology models. Instead, regolith thickness appears to be controlled by metamorphic foliation: regolith is thicker where foliation dips into the topography, and thinner where foliation is nearly parallel to the surface. We hypothesize that, in this catchment, hydraulic conductivity and infiltration capacity control weathering: infiltration is hindered and regolith is thin where foliation is parallel to the surface topography, whereas water infiltrates deeper and regolith is thicker where foliation intersects topography at a substantial angle. These results suggest that bedrock foliation, and perhaps by extension sedimentary layering, can control regolith thickness and must be accounted for in models of critical zone development. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号