首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39035篇
  免费   642篇
  国内免费   241篇
测绘学   756篇
大气科学   2602篇
地球物理   7683篇
地质学   14119篇
海洋学   3554篇
天文学   8747篇
综合类   87篇
自然地理   2370篇
  2022年   258篇
  2021年   446篇
  2020年   505篇
  2019年   585篇
  2018年   1030篇
  2017年   1026篇
  2016年   1092篇
  2015年   590篇
  2014年   1040篇
  2013年   1870篇
  2012年   1201篇
  2011年   1642篇
  2010年   1454篇
  2009年   1800篇
  2008年   1633篇
  2007年   1698篇
  2006年   1565篇
  2005年   1063篇
  2004年   1082篇
  2003年   1117篇
  2002年   998篇
  2001年   869篇
  2000年   798篇
  1999年   724篇
  1998年   715篇
  1997年   723篇
  1996年   589篇
  1995年   573篇
  1994年   501篇
  1993年   453篇
  1992年   409篇
  1991年   424篇
  1990年   437篇
  1989年   391篇
  1988年   370篇
  1987年   400篇
  1986年   415篇
  1985年   508篇
  1984年   545篇
  1983年   543篇
  1982年   496篇
  1981年   454篇
  1980年   432篇
  1979年   408篇
  1978年   375篇
  1977年   384篇
  1976年   346篇
  1975年   354篇
  1974年   344篇
  1973年   370篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Doklady Earth Sciences - Slow crustal subsidence nonuniform in time and space occurred in the sedimentary basin of the Moscow Syneclise during 20 Ma in the Late Devonian. On the cool Precambrian...  相似文献   
992.
The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.  相似文献   
993.
994.
995.
Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S-depletions associated with the lowest rates of sulfate reduction and the lowest 34S-depletions with the highest rates. However, at high sulfate reduction rates (>10 micromoles cm-3 d-1) the lowest fractionation was 20% independent of the rates. Overall, there was a similarity between the fractionation obtained by the natural populations of sulfate reducers and previous measurements from pure cultures. This was somewhat surprising given the extremely high rates of sulfate reduction in the experiments. Our results are explained if we conclude that the fractionation was mainly controlled by the specific rate of sulfate reduction (mass cell-1 time-1) and not by the absolute rate (mass volume-1 time-1). Sedimentary sulfides (mainly FeS2) were on average 40% depleted in 34S compared to seawater sulfate. This amount of depletion was more than could be explained by the isotopic fractionations that we measured during bacterial sulfate reduction. Therefore, additional processes contributing to the fractionation of sulfur isotopes in the sediments are indicated. From both Solar Lake and Logten Lagoon we were able to enrich cultures of elemental sulfur-disproportionating bacteria. We suggest that isotope fractionation accompanying elemental sulfur disproportionation contributes to the 34S depletion of sedimentary sulfides at our study sites.  相似文献   
996.
The study of glass inclusions inside mantle minerals provides direct information about the chemistry of naturally occurring mantle-derived melts and the fine-scale complexity of the melting process responsible for their genesis. Minerals in a spinel lherzolite nodule from Grande Comore island contain glass inclusions which, after homogenization by heating, exhibit a continuous suite of chemical compositions clearly distinct from that of the host basanitic lava. The compositions range from silicic, with nepheline–olivine normative, 64 wt% SiO2 and 11 wt% alkali oxides, to almost basaltic, with quartz normative, 50 wt% SiO2 and 1–2 wt% alkali oxides. Within a single mineral phase, olivine, the inferred primary melt composition varies from 54 to 64 wt% SiO2 for MgO content ranging from 8 to 0.8 wt%. An experimental study of the glass and fluid inclusions indicates that trapped melts represent liquids that are in equilibrium with their host phases at moderate temperature and pressure (T≈1230°C and P≈1.0 Gpa for melts trapped in olivine). Quantitative modelling of the compositional trends defined in the suite shows that all of the glasses are part of a cogenetic set of melts formed by fractional melting of spinel lherzolite, with F varying between 0.2 and 5%. The initial highly silicic, alkali-rich melts preserved in Mg-rich olivine become richer in FeO, MgO, CaO and Cr2O3 and poorer in SiO2, K2O, Na2O, Al2O3 and Cl with increasing melt fractions, evolving toward the basaltic melts found in clinopyroxene. These results confirm the connection between glass inclusions inside mantle minerals and partial mantle melts, and indicate that primary melts with SiO2 >60 wt%, alkali oxides >11%, FeO <1 wt% and MgO <1 wt% are generated during incipient melting of spinel peridotite. The composition of the primary melts is inferred to be dependent on pressure, and to reflect both the speciation of dissolved CO2 and the effect of alkali oxides on the silica activity coefficient in the melt. At pressures around 1 GPa, low-degree melts are characterized by alkali and silica-rich compositions, with a limited effect of dissolved CO2 and a decreased silica activity coefficient caused by the presence of alkali oxides, whereas at higher pressures alkali oxides form complexes with carbonates and, consequently, alkali-rich silica-poor melts will be generated.  相似文献   
997.
The stable boron isotope ratio (11B/10B) in marine carbonates is used as a paleo-pH recorder and is one of the most promising paleo-carbonate chemistry proxies. Understanding the thermodynamic basis of the proxy is of fundamental importance, including knowledge on the equilibrium fractionation factor between dissolved boric acid, B(OH)3, and borate ion, B(OH)4 (, hereafter α(B3-B4)). However, this factor has hitherto not been determined experimentally and a theoretically calculated value (Kakihana and Kotaka, 1977, hereafter KK77) has therefore been widely used. I examine the calculations underlying this value. Using the same spectroscopic data and methods as KK77, I calculate the same α(B3−B4) = 1.0193 at 300 K. Unfortunately, it turns out that in general the result is sensitive to the experimentally determined vibrational frequencies and the theoretical methods used to calculate the molecular forces. Using analytical techniques and ab initio molecular orbital theory, the outcome for α(B3-B4) varies between ∼1.020 and ∼1.050 at 300 K. However, several arguments suggest that α(B3-B4) ? 1.030. Measured isotopic shifts in various 10B-, 2D-, and 18O-labeled isotopomers do not provide a constraint on stable boron isotope fractionation. I conclude that in order to anchor the fundamentals of the boron pH proxy, experimental work is required. The critics of the boron pH proxy should note, however, that uncertainties in α(B3-B4) do not bias pH reconstructions provided that organism-specific calibrations are used.  相似文献   
998.
Ultrasonic data for the velocities of SiO2-stishovite have been determined as a function of pressure to 10 kbar at room temperature for polycrystalline specimens hot-pressed at pressures P = 120kbar and temperatures T = 900°C. These cylindrical specimens are 2 mm in diameter and 0.9–1.4 mm long and have a grain size less than 10 μm. Compressional and shear wave velocities were measured both parallel and perpendicular to the axis of pressing and were found to be isotropic at 10 kbar with νp = 11.0 ± 0.2km/sec andνs = 6.9 ± 0.3km/sec; this shear velocit is substantially higher than that of Mizutani et al. (1972) perhaps due to the presence of crack orientations in their specimen which affected νs but not νp. The Murnaghan P-V trajectories calculated from the ultrasonic data [bulk modulus Ks = 2.5 ± 0.3Mbar and assuming (?Ks/?P)T = 6 ± 2] are consistent with recent hydrostatic compression data and with the shock wave compression data above 600 kbar. The combined evidence from the data of the ultrasonic and hydrostatic compression techniques suggests that the most probable value of the bulk modulus of stishovite at zero pressure is close to the upper limit of the uncertainty of our ultrasonically determined value, K0 = 2.7?2.8Mbar. Elasticity data for rutile-type oxides are not compatible with normal Ks-V0 systematics perhaps due to the neglect of non-central forces in the lattice model. These new stishovite data would make it impossible to satisfy the elasticity-density data of the lower mantle using an oxide mixture with either olivine or pyroxene stoichiometry.  相似文献   
999.
On-site size fractionation of about 40 major and trace elements (TE) was performed on waters from boreal small rivers and their estuaries in the Karelia region of North-West Russia around the “Vetreny Belt” mountain range and in Paanajärvi National Park (Northern Karelia). Samples were filtered in the field using a progressively decreasing pore size (5 μm, 2.5 (3) μm, 0.22 (0.45) μm, 100 kDa, 10 and 1 kDa) by means of frontal filtration and ultrafiltration (UF) techniques and employing in-situ dialysis with 10 and 1 kDa membranes followed by ICP-MS analysis. For most samples, dialysis yields a systematically higher (factor of 2-3) proportion of colloidal forms compared to UF. Nevertheless, dialysis is able to provide a fast and artefact-free in-situ separation of colloidal and dissolved components.Similar to previous studies in European subarctic zones, poor correlation of iron concentration with that of organic carbon (OC) in (ultra)filtrates and dialysates reflect the presence of two pools of colloids composed of organic-rich and Fe-rich particles. All major anions and silica are present as dissolved species (or solutes) passing through the 1-kDa membrane. Size-separation ultrafiltration experiments show the existence of larger or smaller pools of colloidal particles different for each of the considered elements.The effect of rock lithology (acidic versus basic) on the colloidal speciation of TE is seen solely in the increase of Fe and some accompanying TE concentrations in catchment areas dominated by basic rocks compared to granitic catchments. Neither the ultrafiltration pattern nor the relative proportions of colloidal versus truly dissolved TE are affected by the lithology of the underlying rocks: within ±10% uncertainty, the two colloidal (10 kDa-0.22 μm and 1-10 kDa) and the truly dissolved (<1 kDa) pools show no difference in percentage of TE distribution between two types of bedrock lithology. The same conclusion is held for organic- and Fe-rich waters. In contrast, landscape context analysis demonstrated slight dominance, for most TE affected by UF, of large-size colloids (10 kDa-0.22 μm) in rivers and streams and small-size colloids and truly dissolved fractions in swamp stagnant surface waters. This supports the existence of two pathways of colloids formation: during the plant litter degradation in wetland zones and at the redox front in river riparian zone.  相似文献   
1000.
A field‐based project was initiated in order to characterize velocities and sediment entrainment in a forced‐pool and riffle sequence. Three‐dimensional velocities and turbulence intensities were measured with an acoustic Doppler velocimeter at 222 different points at three similar flows that averaged approximately 4·35 m3 s−1 within a large pool–riffle unit on North Saint Vrain Creek, Colorado. Sediment‐sorting patterns were observed with the introduction of 500 tracer particles painted according to initial seeding location. Tracer particles moved sporadically during a 113 day period in response to the annual snowmelt peak flow, which reached a maximum level of 14·8 m3 s−1. Velocity data indicate high instantaneous velocities and turbulence levels in the centre of pools. Patterns of sediment deposition support the notion that stream competence is higher in the pool than the downstream riffle. Flow convergence around a large channel constriction appears to play a major role in multiple processes that include helical flow development and sediment routing, and backwater development with low velocities and turbulence levels above the constriction that may locally limit sediment supply. Jet flow, flow separation, vortex scour and turbulence generation enhance scour in the centre of pools. Ultimately, multiple processes appear to play some role in maintenance of this forced pool and the associated riffle. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号