首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   16篇
  国内免费   2篇
测绘学   3篇
大气科学   28篇
地球物理   57篇
地质学   68篇
海洋学   10篇
天文学   23篇
自然地理   40篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   21篇
  2017年   15篇
  2016年   18篇
  2015年   12篇
  2014年   7篇
  2013年   24篇
  2012年   11篇
  2011年   12篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   13篇
  2006年   10篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1983年   1篇
  1980年   2篇
  1945年   1篇
排序方式: 共有229条查询结果,搜索用时 0 毫秒
51.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   
53.
We compared four remote sensing methods to detect changes in New Zealand's grasslands (image differencing, normalised difference vegetation index (NDVI) differencing post‐classification and visual interpretation). The visual interpretation resulted in the best classification results, with a 98% overall accuracy when compared with ground‐truthed data. The tests on automatic classification (image differencing, NDVI differencing) and post classification had much lower accuracies, ranging from 47% to 56%. In the New Zealand grassland landscape, automatic detection methods were not able to differentiate between variations of soil moisture and vegetation phenology from variations in land‐use change. This, in combination with topographic effects, which have hampered the automated mapping of vegetation, is the main reason why visual interpretation of high‐resolution imagery is still needed.  相似文献   
54.
As sedimentation progresses in the formation and evolution of a depositional geologic basin, the rock strata are subject to various stresses. With increasing lithostatic pressure, compressional forces act to compact the porous rock matrix, leading to overpressure buildup, changes in the fluid pore pressure and fluid flow. In the context of petroleum systems modelling, the present study concerns the geometry changes that a compacting basin experiences subject to deposition. The purpose is to track the positions of the rock layer interfaces as compaction occurs. To handle the challenge of potentially large geometry deformations, a new modelling concept is proposed that couples the pore pressure equation with a level set method to determine the movement of lithostratigraphic interfaces. The level set method propagates an interface according to a prescribed speed. The coupling term for the pore pressure and level-set equations consists of this speed function, which is dependent on the compaction law. The two primary features of this approach are the simplicity of the grid and the flexibility of the speed function. A first evaluation of the model concept is presented based on an implementation for one spatial dimension accounting for vertical effective stress. Isothermal conditions with a constant fluid density and viscosity were assumed. The accuracy of the implemented numerical solution for the case of a single stratigraphic unit with a linear compaction law was compared to the available analytical solution [38]. The multi-layer setup and the nonlinear case were tested for plausibility.  相似文献   
55.
We investigated the distribution of δ13C and δ15N of organic matter among benthic communities from the upper estuary of Yura River to offshore of Tango Sea, Japan, to determine spatial variation in utilization of organic matter by benthic communities. The δ13C values of benthic animals ranged from −27 to −15‰ in the upper estuary, −21 to −15‰ in the lower estuary, −20 to −16‰ in the shallow coast (5–10 m depths), −18 to −16‰ in the deep coast (30–60 m depths) and −19 to −15‰ in offshore (100–150 m depths) stations. Adapting the dual isotope values to mixing models, we estimated the relative contributions of potential food sources to the benthos diet. Phytoplankton and macroalgae that intruded the estuary in summer were utilized as alternative food aside from the terrestrial-origin organic matter assimilated by the estuarine benthic consumers. Resuspended benthic microalgae were important source of energy in the shallow coastal stations, while abundant supply of phytodetritus fueled the deep coastal and offshore benthic food webs. Spatial difference in the diet of benthic communities depends largely on the shifts in the primary carbon source. Thus, benthic communities are important link of autochthonous/allochthonous production and secondary production in the continuous river–estuary–marine system.  相似文献   
56.
Wildfires are increasing in severity and frequency in the American West, but there is limited understanding of their economic effects at the community level. We conducted a case study of the impacts of large wildfires in 2008 in Trinity County, California, by examining labor market, suppression spending, and qualitative interview data. We found that the 2008 fires had interrelated effects on several economic sectors in the county. Labor market data indicated a decrease in total private-sector employment and wages and an increase in public-sector employment and wages during the summer of 2008 compared to the previous year, while interviews captured more nuanced impacts for individual businesses.  相似文献   
57.
A Benthic Terrain Classification Scheme for American Samoa   总被引:2,自引:0,他引:2  
Coral reef ecosystems, the most varied on earth, continually face destruction from anthropogenic and natural threats. The U.S. Coral Reef Task Force seeks to characterize and map priority coral reef ecosystems in the U.S./Trust Territories by 2009. Building upon NOAA Biogeography shallow-water classifications based on Ikonos imagery, presented here are new methods, based on acoustic data, for classifying benthic terrain below 30 m, around Tutuila, American Samoa. The result is a new classification scheme for American Samoa that extends and improves the NOAA Biogeography scheme, which, although developed for Pacific island nations and territories, is only applicable to a maximum depth of 30 m, due to the limitations of satellite imagery. The scheme may be suitable for developing habitat maps pinpointing high biodiversity around coral reefs throughout the western Pacific.  相似文献   
58.
Photochemical mineralization of dissolved organic matter (DOM) plays an important role in the cycling of carbon in estuarine systems. A key to modeling this process is knowledge of apparent quantum yields (AQYs) for the photochemical products. Here we determined spectral AQYs for carbon dioxide (CO2) and carbon monoxide (CO), the main products of DOM photomineralization, along the main axis of the Delaware Estuary. Apparent quantum yields for CO2 photoproduction were determined shipboard using a multi-spectral irradiation system. Carbon monoxide AQYs were determined in stored samples by employing a narrow band spectral irradiation system. A single AQY spectrum described carbon dioxide photochemical production within the estuary whereas CO AQY spectra varied with salinity, suggesting different precursors and mechanisms for the production of these two species. CO2 AQYs were used along with shipboard measurements of DOM absorbance and solar irradiance to calculate photoproduction rates. Calculated CO2 photoproduction rates agreed with directly measured rates (2 to 4 μM CO2 d? 1) within experimental error, supporting the further development and use of AQYs to calculate regional-scale photochemical fluxes.  相似文献   
59.
Geographical indications, as a form of intellectual property, are becoming increasingly important in global trade. In South Africa's trade and cooperation agreement with the European Union, problems over the use of names such as 'port' and 'sherry' provided an important obstacle to the conclusion of the trade deal. This paper argues that the conflict over geographical indications in this trade agreement must be seen in the context of broader initiatives to establish a system of protecting this form of intellectual property through the World Trade Organisation.  相似文献   
60.
ABSTRACT

Monitoring of destructive invasive weeds such as those from the genus Striga requires accurate, near real-time predictions and integrated assessment techniques to enable better surveillance and consistent assessment initiatives. Thus, in this study, we predicted the potential ecological niche of Striga (Striga asiatica) weed in Zimbabwe, to identify and understand its propagation and map potentially vulnerable cropping areas. Vegetation phenology from remote sensing, bioclimatic and other environmental variables (i.e. cropping system, edaphic, land surface temperature, and terrain) were used as predictors. Six machine learning modeling techniques and the ensemble model were evaluated on their suitability to predict current and future Striga weed distributional patterns. The mentioned predictors (n = 40) were integrated into six models with “presence-only” training and evaluation data, collected in Zimbabwe over the period between the 12th and 28th of March 2018. The area under the curve (AUC) and true skill statistic (TSS) were used to measure the performance of the Striga modeling framework. The results showed that the ensemble model had the strongest Striga occurrence predictive power (AUC = 0.98; TSS = 0.93) when compared to the other modeling algorithms. Temperature seasonality (Bio4), the maximum temperature of the warmest month (Bio5) and precipitation seasonality (Bio15) were determined to be the most dominant bioclimatic variables influencing Striga occurrence. “Start of the season” and “season minimum value” of the “Enhanced Vegetation Index base value” were the most relevant remote sensing-based variables. Based on projected climate change scenarios, the study showed that up to 2050, the suitable area for Striga propagation will increase by ~ 0.73% in Zimbabwe. The present work demonstrated the importance of integrating multi-source data in predicting possible crop production restraints due to weed propagation. The results can enhance national preparedness and management strategies, specifically, if the current and future risk areas can be identified for early intervention and containment  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号