排序方式: 共有40条查询结果,搜索用时 0 毫秒
31.
32.
33.
Northern peatlands store approximately one-third of the terrestrial soil carbon (C), although they cover only 3% of the global land mass. Northern peatlands can be subdivided into bogs and fens based on their hydrology and biogeochemistry. Peatland hydrology and biogeochemistry are tightly coupled to climate and, therefore, may be very sensitive to climate variability and change. To address the fate of the large peatland soil C storage under a future changed climate, a peatland C model, the McGill Wetland Model (MWM), was coupled to a land surface climate model (the wetland version of the Canadian Land Surface Scheme, CLASS3W), referred as CLASS3W-MWM. We evaluated the CLASS3W-MWM for a bog (Mer Bleue, located at 45.41°N, 75.48°W, in eastern Canada) and a poor fen (Degerö Stormyr, located at 64°11′N, 19°33′E, in northern Sweden). CLASS3W-MWM captured the magnitude and direction of the present day C cycling very well for both bogs and fens. Moreover, the seasonal and interannual variability were reproduced reasonably well. Root mean square errors (RMSE) were <0.65 and the degree of agreements (d*) were >0.8 for the components of net ecosystem production (NEP) for both the Mer Bleue bog and the Degerö Stormyr fen. The performance of the coupled model for both bog and fen is similar to that of the stand-alone MWM driven by observed weather rather than simulated surface and soil climate. This modelling study suggests that northern peatlands are hydrologically and thermally conservative ecosystems. It was also shown that C cycling for bogs and fens was more sensitive to changes in air temperature than precipitation. Changes in temperature within the Intergovernmental Panel on Climate Change (IPCC) projected range switch the peatlands from a present-day C sink to a source, but projected changes in precipitation still maintain the peatlands as a C sink, although to a somewhat lesser degree. Increase in atmospheric CO2 concentration enhances C sequestration for both bogs and fens. Our sensitivity analysis suggests that northern peatlands respond to changes in temperature, precipitation and doubled CO2 concentration in a highly non-linear way. The sensitivity of C cycling in northern peatlands with respect to changes in air temperature, precipitation and the concentration of atmospheric CO2 together is not a simple addition or subtraction of the sensitivity of the individual changes. Therefore, the sensitivity of a combination of changes in temperature, precipitation and doubled CO2 concentration is very different from the sensitivity of peatlands to each environmental variable on their own. Our sensitivity analysis suggests that fens have a narrower tolerance to climate changes than bogs. RÉSUMÉ [Traduit par la rédaction] Les tourbières du Nord renferment approximativement le tiers du carbone se trouvant dans le sol terrestre, même si elles ne couvrent que 3% des terres du globe. On peut subdiviser les tourbières du Nord en tourbières hautes et en tourbières basses selon leur hydrologie et leur biogéochimie. L'hydrologie et la biogéochimie des tourbières sont intimement liées au climat et peuvent donc être très sensibles à la variabilité et au changement climatique. Pour étudier comment évoluera le stockage du carbone dans les grands terrains tourbeux sous un climat futur modifié, nous avons couplé un modèle de carbone de tourbière, le McGill Wetland Model (MWM), à un modèle climatique de surface terrestre (la version terres humides du CLASS3W canadien), c'est-à-dire le CLASS3W–MWM. Nous avons évalué le CLASS3W–MWM pour une tourbière haute (Mer Bleue, situé à 45,41°N, 75,48°O, dans l'est du Canada) et pour une tourbière basse ombrotrophe (Degerö Stormyr, situé à 64°11′N, 19°33′E, dans le nord de la Suède). Le CLASS3W–MWM a très bien capturé la grandeur et la direction du recyclage actuel du carbone, tant pour les tourbières hautes que pour les tourbières basses. De plus, la variabilité saisonnière et interannuelle a été raisonnablement bien reproduire. Les écarts-types étaient <0,65 et les degrés de concordance (d*) étaient >0,8 pour les composantes de la production nette de l’écosystème tant pour la tourbière haute Mer Bleue que pour la tourbière basse Degerö Stormyr. La performance du modèle couplé pour la tourbière haute et la tourbière basse est semblable à celle du MWM autonome piloté par des conditions observées plutôt que par un climat simulé de la surface et du sol. Cette étude par modèle suggère que les tourbières du Nord sont des écosystèmes hydrologiquement et thermiquement conservatifs. Il a aussi été démontré que le recyclage du carbone pour les tourbières hautes et basses était plus sensible aux changements dans la température de l'air que dans les précipitations. Des changements de température de l'ordre de ceux projetés par le Groupe d'experts intergouvernemental sur l’évolution du climat (GIEC) font que les actuels puits de carbone que constituent les tourbières se transforment en sources, mais les changements projetés dans les précipitations maintiennent encore les tourbières comme des puits de carbone, quoique dans une moindre mesure. L'accroissement de la concentration du CO2 atmosphérique améliore la séquestration du carbone à la fois pour les tourbières hautes et les tourbières basses. Notre analyse de sensibilité suggère que les tourbières du Nord réagissent aux changements dans la température et les précipitations et à une concentration doublée de CO2 d'une façon fort peu linéaire. La sensibilité du recyclage du carbone dans les tourbières du Nord par rapport aux changements dans la température de l'air, les précipitations et la concentration du CO2 atmosphérique ensemble n'est pas une simple addition ou soustraction de la sensibilité aux changements individuels. Par conséquent, la sensibilité à une combinaison de changements dans la température et les précipitations et à une concentration doublée de CO2 est très différente de la sensibilité des tourbières à chaque variable environnementale prise seule. Notre analyse de sensibilité suggère que les tourbières basses ont une plus faible tolérance aux changements climatiques que les tourbières hautes. 相似文献
34.
35.
Following large‐scale surface oil sands mining, large tracts of the boreal forest in the Athabasca Oil Sands Region of Western Canada are legally required to be reclaimed. A greater understanding of how these novel ecosystems function and develop with regard to water use is crucial to aid in the development of regulatory practices and protocols based on information from ecosystem recovery. In this paper, a 12‐year (2003–2014) eddy covariance measurement record of latent and sensible heat fluxes and gross ecosystem productivity of carbon dioxide is analysed to evaluate how a reclaimed boreal forest has developed during its initial growth period. The study site is a reclaimed oil sands saline‐sodic clay shale overburden deposit that was topped with 100 cm of glacial till and 20 cm of peat mineral mix. The site was seeded with barley (Hordeum spp.) in 2001 to reduce erosion of the soil cover whereas aspen (Populus tremuloides Michx.) and spruce (Picea glauca [Moench] Voss) boreal tree species were planted in 2004. Changes in structure and function corresponded to the transition of dominant vegetation cover from early successional species to forest. Leaf area index increased from a growing season peak of 0.9 in 2003 to 4.0 in 2014 and was associated with an increased growing season gross ecosystem productivity (4.9 to 8.9 g C m?2 day?1), an increased evapotranspiration (1.6 to 3.4 mm day?1), and a decreased partitioning of energy to sensible heat (Bowen's ratio decreased from 1.1 to 0.4). Although canopy conductance increased throughout the 12 years, the shift from early successional species to trees with more conservative water use resulted in a decrease in conductance normalized by leaf area. Water use efficiency has increased slightly since 2008 with an average of 10.0 g CO2 kg?1 H2O for the last 6 years. No prolonged dry periods were observed during the study period. The functioning of this novel ecosystem is evolving as expected on the basis of the trends observed for other natural and disturbed boreal forests. 相似文献
36.
—Over the last 10 million years, the Yellowstone hot spot has passed beneath the eastern Snake River Plain, both magmatically modifying the Snake River Plain crust and creating a wider, wake-like "tectonic parabola" of seismicity and uplift. Analysis of SKS arrivals to a line array of 55 mostly broadband stations, distribution across the tectonic parabola, reveals a nearly uniform orienta tion of anisotropy, with an average fast axis orientation of N64E. The back azimuth of null splitting events is parallel to the measured fast axis, suggesting that anisotropic material consists of a single layer. Splitting parameters are independent of backazimuth, suggesting that anisotropy is constant beneath each station. Thus station-averaged split parameters are representative of the anisotropy beneath the station. Station-averaged split times range from 0.6–1.5 s, and define a pronounced depression in split times centered about 80 km southeast of the axis of the Snake River Plain.¶Assuming the degree of anisotropy (averaged over the ray path) to be no more than 10%, the split times are far too great for the anisotropy to be confined solely to the lithosphere. The simplest way to explain the observed anisotropy structure is to attribute it to simple shear strain caused by the absolute motion of North America. Because anisotropy is different in nearby Colorado and Nevada, we hypothesize that fossil anisotropy created in past orogens and continent-building events in the Snake River Plain area has been reset or erased by the passage of the hot spot, and that subsequent strain of the hot spot-related asthenospheric wake created a uniformly oriented fast axis. If this is true, then our array constrains the minimum of the hot spot’s asthenospheric wake. 相似文献
37.
A. J. King S. S. Russell P. F. Schofield E. R. Humphreys‐Williams S. Strekopytov F. A. J. Abernethy A. B. Verchovsky M. M. Grady 《Meteoritics & planetary science》2019,54(3):521-543
Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. ( 2007 ) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions. 相似文献
38.
M. D. Gray R. J. Ivison E. M. L. Humphreys & J. A. Yates 《Monthly notices of the Royal Astronomical Society》1998,295(4):970-976
Building on the detection of the J =7–6 SiO maser emission in both the v =1 and v =2 vibrational states towards the symbiotic Mira R Aquarii, we have used the James Clerk Maxwell Telescope to study the changes in the SiO maser features from R Aqr over a stellar pulsational period. The observations, complemented by contemporaneous data taken at 86 GHz, represent a test of the popular thermal-instability clump models of SiO masers. The 'clump' model of SiO maser emission considers the SiO masers to be discrete emitting regions which differ from their surroundings in the values of one or more physical variables (SiO abundance, for example). We find that our observational data are consistent with a clump model in which the appearance of maser emission in the J =7–6 transitions coincides with an outward-moving shock impinging on the inner edge of the maser zone. 相似文献
39.
40.
W. H. Blake P. J. Wallbrink S. H. Doerr R. A. Shakesby G. S. Humphreys 《地球表面变化过程与地形》2006,31(2):249-264
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献