首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  国内免费   3篇
测绘学   2篇
大气科学   52篇
地球物理   6篇
地质学   12篇
海洋学   5篇
天文学   33篇
自然地理   1篇
  2019年   3篇
  2018年   2篇
  2016年   5篇
  2015年   1篇
  2014年   12篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1963年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
41.
This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 18 energy-economy and integrated assessment models. The study investigated the importance of individual mitigation options such as energy intensity improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Limiting the atmospheric greenhouse gas concentration to 450 or 550 ppm CO2 equivalent by 2100 would require a decarbonization of the global energy system in the 21st century. Robust characteristics of the energy transformation are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy are found to be most important, due in part to their combined ability to produce negative emissions. The importance of individual low-carbon electricity technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology availability.  相似文献   
42.
Abstract— The presence of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite Allan Hills 84001 (ALH 84001) was considered to be a major sign of ancient biogenic activity on planet Mars (McKay et al. 1996). An asserted spatial association of PAHs with carbonates, carriers of so‐called nanofossils, was crucial for their suggested connection to early life forms. Although both observations can be explained individually without employing living organisms, a lateral correlation of PAHs and carbonates would suggest a genetic link between PAHs and the microstructures, favoring a biogenic explanation. On the other hand, without such a correlation, a biogenic or even a Martian origin of the PAHs cannot be inferred. Here we show that there is no correlation of PAHs and carbonates in ALH 84001. Furthermore, a general trend of high PAH concentrations at locations where terrestrial lead is present obviously suggests a terrestrial origin for PAHs in ALH 84001.  相似文献   
43.
Abstract– The petrographic investigation of a shocked, chalcedony‐, quartzine‐, and quartz‐bearing allochthonous chert nodule (probably Upper Cretaceous) recovered from surficial wadi gravels in the inner parts of the central uplift of the approximately 6 km in diameter Jebel Waqf as Suwwan impact structure, Jordan, reveals new potential shock indicators in microfibrous–spherulitic silica, in addition to well‐established shock‐metamorphic effects in coarser crystalline quartz. The microcrystalline chert groundmass exhibits a macroscopic dendritic and suborthogonal fracture pattern commonly associated with thin “recrystallization bands” that intersect the pre‐existing diagenetic chert fabric. Fibrous aggregates of quartzine spherulites in chalcedony‐quartzine‐quartz veinlets locally have a shattered appearance and show conspicuous “curved fractures” perpendicular to the quartzine fiber direction (and parallel to [0001]) that commonly trend subparallel to planar fractures (PFs) in neighboring shocked quartz. Quartz exhibits PFs, feather features (FFs), and mainly single sets of planar deformation features (PDFs) parallel to the basal plane (0001) (Brazil twins) and, rarely, additional PDFs parallel to {101¯3}. Shock petrography indicates shock pressures of ≥10 GPa and high shock‐induced differential stresses that affected the chert nodule. The internal crosscutting relationships of primary diagenetic and impact‐related deformational features together with shockpressure estimates suggest that the curved fractures across quartzine spherulites might represent specific (low‐ to medium‐pressure) shock‐metamorphic features, possibly in structural analogy to basal plane PFs in quartz. The dendritic–suborthogonal fractures in the microcrystalline chert groundmass and recrystallization bands are likely related to impact‐induced shear deformation and recrystallization, respectively, and cannot be considered as definite shock indicators.  相似文献   
44.
Abstract— 40Ar-39Ar age measurements were made for three whole rock melt samples produced during impact events which formed the Dellen, Jänisjärvi, and Sääksjärvi craters on the Baltic Shield. An age of 109.6 ± 1.0 Ma was obtained for the Dellen sample based on an age spectrum plateau. The age spectrum shows a small (7%) loss of radiogenic 40Ar from low temperature fractions. Ages of 698 ± 22 Ma and 560 ± 12 Ma were obtained from isochrons for the Jänisjärvi and Sääksjärvi samples, respectively. Data obtained by laser degassing support the Sääksjärvi result. The presence of excess 40Ar is indicated in lower temperature fractions for both samples and is correlated with K concentrations in the Sääksjärvi sample. Models explaining these results may require a change in the local “atmospheric” Ar isotopic composition as cooling of melt rocks proceeded. However, it cannot be excluded that devitrification and/or alteration changed the Ar budget. A crater production rate on the Baltic Shield based on measured ages of 6 craters is (0.3 ± 0.2) · 10?14 20-km-and-larger craters per km2 per year, in satisfactory agreement with previous estimates.  相似文献   
45.
Abstract— We compiled a table of all major, minor, and trace-element abundances in 89 interplanetary dust particles (IDPs) that includes data obtained with proton-induced x-ray emission (PIXE), synchroton x-ray fluorescence (SXRF), and secondary ion mass spectrometry (SIMS). For the first time, the reliability of the trace-element abundances in IDPs is tested by various crosschecks. We also report on the results of cluster analyses that we performed on IDP compositions. Because of the incompleteness of the data set, we included only the elements Cr, Mn, Ni, Cu, and Zn, normalized to Fe and CI chondrite abundances, that are determined in 73 IDPs. The data arrange themselves in four rather poorly defined groups that we discuss in relation to CI chondrites following the assumption that on the average CI abundances are most probable. The largest group (chondritic), with 44 members, has close to CI abundances for many refractory and moderately refractory elements (Na, Al, Si, P, K, Sc, Ti, V, Cr, Co, Ge, Sr). It is slightly depleted in Fe and more in Ca and S, while the volatile elements (Cl, Cu, Zn, Ga, Se, Rb) are enriched by =1.7 × CI and Br by 21 × CI. The low-Zn group, with 12 members, is very similar to the chondritic group except for its Zn-depletion, stronger Ca-depletion and Fe-enrichment. The low-Ni group, with 11 members, has Ni/Fe = 0.03 × CI and almost CI-like Ca, but its extraterrestrial origin is not established. The last group (6 members) contains non-systematic particles of unknown origin. We found that Fe is inhomogeneously distributed on a micron scale. Furthermore, the abundances of elements that are measured near their limits of detection are easily overestimated. These biases involved, the incomplete data set and possible contaminating processes prevent us from obtaining information on the specific origin(s) of IDPs from elemental abundances.  相似文献   
46.
47.
We start from the observation that climate targets under uncertainty should be interpreted as safety constraints on the probability of crossing a certain threshold, such as 2??C global warming. We then highlight, by ways of a simple example, that cost-effectiveness analysis for such probabilistic targets leads to major conceptual problems if learning about uncertainty is taken into account and the target is fixed. Current target proposals presumably imply that targets should be revised in the light of new information. Taking this into account amounts to formalizing how targets should be chosen, a question that was avoided by cost-effectiveness analysis. One way is to perform a full-fledged cost-benefit analysis including some kind of monetary damage function. We propose multi-criteria decision analysis including a target-based risk metric as an alternative that is more explicite in its assumptions and more closely based on given targets.  相似文献   
48.
This study explores the importance of bioenergy to potential future energy transformation and climate change management. Using a large inter-model comparison of 15 models, we comprehensively characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives. Model scenarios project, by 2050, bioenergy growth of 1 to 10 % per annum reaching 1 to 35 % of global primary energy, and by 2100, bioenergy becoming 10 to 50 % of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 % of regional electricity from biopower by 2050, and up to 70 % of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation and macroeconomic costs of climate policies. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels, but with potential implications for climate outcomes. Finally, we find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. The results suggest opportunities, but also imply challenges. Overall, further evaluation of the viability of large-scale global bioenergy is merited.  相似文献   
49.
50.
This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: 1) the level of radiative forcing of the climate system (as characterised by the representative concentration pathways) and 2) a set of alternative plausible trajectories of future global development (described as shared socio-economic pathways). The matrix can be used to guide scenario development at different scales. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic pathways and shared policy assumptions (devices for incorporating explicit mitigation and adaptation policies), are elaborated in other papers in this special issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号