首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   23篇
  国内免费   7篇
测绘学   20篇
大气科学   58篇
地球物理   175篇
地质学   332篇
海洋学   95篇
天文学   88篇
综合类   5篇
自然地理   135篇
  2022年   4篇
  2021年   11篇
  2020年   16篇
  2019年   12篇
  2018年   23篇
  2017年   29篇
  2016年   33篇
  2015年   19篇
  2014年   34篇
  2013年   72篇
  2012年   33篇
  2011年   57篇
  2010年   47篇
  2009年   48篇
  2008年   49篇
  2007年   47篇
  2006年   32篇
  2005年   20篇
  2004年   39篇
  2003年   37篇
  2002年   24篇
  2001年   20篇
  2000年   10篇
  1999年   16篇
  1998年   14篇
  1997年   13篇
  1996年   9篇
  1995年   14篇
  1994年   6篇
  1993年   8篇
  1992年   9篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   13篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1975年   2篇
  1972年   2篇
  1970年   2篇
  1967年   2篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
221.
222.
We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influence the delivery of sediment and total organic carbon (TOC) over the past 50–60 years. Sediment cores were collected from sites within the Delta representing the Sacramento River (SAC), the San Joaquin River (SJR), and Franks Tract (FT), a flooded agricultural tract. A variety of anthropogenic tracers including 137Cs, total DDE (∑DDE) and brominated diphenyl ether (BDE) congeners were used to quantify sediment accumulation rates. This information was combined with total organic carbon (TOC) profiles to quantify rates of TOC accumulation. Across the three sites, sediment and TOC accumulation rates were four to eight-fold higher prior to 1972. Changes in sediment and TOC accumulation were coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Radiocarbon content of TOC indicated that much of the carbon delivered to the Delta is “pre-aged” reflecting processing in the Delta watershed or during transport to the sites rather than an input of predominantly contemporary carbon (e.g., 900–1400 years BP in surface sediments and 2200 yrs BP and 3610 yrs BP at the base of the SJR and FT cores, respectively). Together, these data suggest that human activities have altered the amount and age of TOC accumulating in the Delta since the 1940s.  相似文献   
223.
Livelihoods in drylands are already challenged by the demands of climate variability, and climate change is expected to have further implications for water resource availability in these regions. This paper characterizes the vulnerability of an irrigation-dependent agricultural community located in the Elqui River Basin of Northern Chile to water and climate-related conditions in light of climate change. The paper documents the exposures and sensitivities faced by the community in light of current water shortages, and identifies their ability to manage these exposures under a changing climate. The IPCC identifies potentially increased aridity in this region with climate change; furthermore, the Elqui River is fed by snowmelt and glaciers, and its flows will be affected by a warming climate. Community vulnerability occurs within a broader physical, economic, political and social context, and vulnerability in the community varies amongst occupations, resource uses and accessibility to water resources, making some more susceptible to changing conditions in the future. This case study highlights the need for adaptation to current land and water management practices to maintain livelihoods in the face of changes many people are not expecting.  相似文献   
224.
Coupling basin- and site-scale inverse models of the Española aquifer   总被引:1,自引:0,他引:1  
Large-scale models are frequently used to estimate fluxes to small-scale models. The uncertainty associated with these flux estimates, however, is rarely addressed. We present a case study from the Espa?ola Basin, northern New Mexico, where we use a basin-scale model coupled with a high-resolution, nested site-scale model. Both models are three-dimensional and are analyzed by codes FEHM and PEST. Using constrained nonlinear optimization, we examine the effect of parameter uncertainty in the basin-scale model on the nonlinear confidence limits of predicted fluxes to the site-scale model. We find that some of the fluxes are very well constrained, while for others there is fairly large uncertainty. Site-scale transport simulation results, however, are relatively insensitive to the estimated uncertainty in the fluxes. We also compare parameter estimates obtained by the basin- and site-scale inverse models. Differences in the model grid resolution (scale of parameter estimation) result in differing delineation of hydrostratigraphic units, so the two models produce different estimates for some units. The effect is similar to the observed scale effect in medium properties owing to differences in tested volume. More important, estimation uncertainty of model parameters is quite different at the two scales. Overall, the basin inverse model resulted in significantly lower estimates of uncertainty, because of the larger calibration dataset available. This suggests that the basin-scale model contributes not only important boundary condition information but also improved parameter identification for some units. Our results demonstrate that caution is warranted when applying parameter estimates inferred from a large-scale model to small-scale simulations, and vice versa.  相似文献   
225.
Sea water intrusion by sea-level rise: scenarios for the 21st century   总被引:4,自引:0,他引:4  
This study presents a method to assess the contributions of 21st-century sea-level rise and groundwater extraction to sea water intrusion in coastal aquifers. Sea water intrusion is represented by the landward advance of the 10,000 mg/L iso-salinity line, a concentration of dissolved salts that renders groundwater unsuitable for human use. A mathematical formulation of the resolution of sea water intrusion among its causes was quantified via numerical simulation under scenarios of change in groundwater extraction and sea-level rise in the 21st century. The developed method is illustrated with simulations of sea water intrusion in the Seaside Area sub-basin near the City of Monterey, California (USA), where predictions of mean sea-level rise through the early 21st century range from 0.10 to 0.90 m due to increasing global mean surface temperature. The modeling simulation was carried out with a state-of-the-art numerical model that accounts for the effects of salinity on groundwater density and can approximate hydrostratigraphic geometry closely. Simulations of sea water intrusion corresponding to various combinations of groundwater extraction and sea-level rise established that groundwater extraction is the predominant driver of sea water intrusion in the study aquifer. The method presented in this work is applicable to coastal aquifers under a variety of other scenarios of change not considered in this work. For example, one could resolve what changes in groundwater extraction and/or sea level would cause specified levels of groundwater salinization at strategic locations and times.  相似文献   
226.
This briefing describes the first deployment of a new electronic tracer (E‐tracer) for obtaining along‐flowpath measurements in subsurface hydrological systems. These low‐cost, wireless sensor platforms were deployed into moulins on the Greenland Ice Sheet. After descending into the moulin, the tracers travelled through the subglacial drainage system before emerging at the glacier portal. They are capable of collecting along‐flowpath data from the point of injection until detection. The E‐tracers emit a radio frequency signal, which enables sensor identification, location and recovery from the proglacial plain. The second generation of prototype E‐tracers recorded water pressure, but the robust sensor design provides a versatile platform for measuring a range of parameters, including temperature and electrical conductivity, in hydrological environments that are challenging to monitor using tethered sensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
227.
18O/16O data from the 200-m-thick, 0.76 Ma Bishop Tuff outflow sheet provide evidence for a vigorous, short-lived (≈10 years), high-temperature, fumarolic meteoric–hydrothermal event. This is proved by: (1) the juxtaposition in the upper, partially welded Bishop Tuff of low-18O groundmass/glass (δ18O=−5 to +3) with coexisting quartz and feldspar phenocrysts having magmatic δ18O values (+8.7±0.3; +7.5±0.3); and (2) the fact that these kinds of 18O/16O signatures correlate very well with morphological features and mapped zones of fumarolic activity. Profiles of δ18O with depth in the Bishop Tuff within the fumarole area define a 40- to 50-m-thick, low-18O, stratigraphic zone that is sandwiched between the essentially unwelded near-surface portion of the tuff and an underlying, densely welded black tuff that displays magmatic 18O/16O values. Shallow-dipping columnar joints and other fumarolic features (i.e., subhorizontal tubular conduits and steep fissures) correlate very well with these pervasively devitrified, low-18O zones. The base of the low-18O zone is extremely sharp (3‰ per meter) and is located directly above the transition from partially welded tuff to densely welded black tuff. The observed average whole-rock 18O-depletions within this low-18O zone are about 6–7‰, requiring meteoric water/rock ratios in excess of 0.24 in mass units. Rainfall on the surface of the tuff would not have been high enough to supply this much H2O in the short lifetime of fumarolic activity, suggesting that some recharge must have been from groundwater flow through the upper part of the tuff, above the sloping (1°–5°) top of the impermeable lower zone. This is compatible with the observation that the fumarolic areas roughly correlate with the preeruptive regional drainage pattern. Some of this recharge may in part have been from the lake that filled Long Valley caldera, which was dammed by the Bishop Tuff up to the level of this boundary between the partially and densely welded zones (≈7000 ft, the elevation of the highest Long Valley Lake shorelines). Gazis et al. had previously shown that the 2.8-Ma intracaldera Chegem Tuff from the Caucasus Mountains exhibits exactly the same kind of 18O-signature that we have correlated with fossil fumaroles in the Bishop Tuff outflow sheet. Although not recognized as such by McConnell et al.; 18O/16O data from drill-hole samples from the intracaldera Bishop Tuff in Long Valley also display this characteristic 18O signature (i.e., analogous δ18O-depth profiles, as well as low-18O groundmass coexisting with high-18O feldspar phenocrysts). This fumarolic 18O/16O signature is observed to much greater depths (≈650–750 m) in the intracaldera tuffs (≈1500 m thick) than it is in the ≈200-m-thick Bishop Tuff outflow sheet (≈80 m depth).  相似文献   
228.
In this study, samples were taken from three contrasting freshwater sources and amended with salt in order to determine the influence of salinity and dissolved organic matter (DOM) composition on DOM recovery via ultrafiltration and solid phase extraction (SPE) with C18 disks. Salt addition caused variable recovery of DOM when using C18 SPE, and ultraviolet–visible spectroscopic characterization of the extracted material showed spectral responses that varied among sample sources. In contrast, increasing sample salinity from 0 to 30 ppt consistently caused a 15–25% reduction in the amount of high molecular weight DOM isolated by ultrafiltration for both dissolved organic carbon (DOC) and chromophoric DOM (CDOM), regardless of DOM composition. We hypothesize that a change in conformation (such as coiling or disaggregation) of DOM molecules occurs in the presence of salt, allowing them to pass through the ultrafiltration membrane and thereby decreasing the DOM retained by ultrafiltration. These results are important because they demonstrate that changes in salinity can influence DOM recovery in estuaries. Interpretation of DOM characteristics along estuarine gradients needs to account for potential artifacts introduced by sample isolation techniques.  相似文献   
229.
230.
The Pentland Firth, located between the north coast of mainland Scotland (UK) and the Orkney Islands, is recognised as an excellent location for the utilisation of tidal stream technology. Potential ecological impacts associated with tidal stream technology may ultimately depend on device design, array size and deployment location. Available ecological data for the Pentland Firth is summarised and strategic priorities for assessing ecological impacts are provided. Baseline data on marine species and habitats in the Pentland Firth is severely lacking and consequently the integrity of any environmental impact assessment could be compromised by this lack of data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号