首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   84篇
  国内免费   1篇
测绘学   14篇
大气科学   116篇
地球物理   348篇
地质学   410篇
海洋学   76篇
天文学   148篇
综合类   10篇
自然地理   61篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   34篇
  2020年   31篇
  2019年   13篇
  2018年   60篇
  2017年   55篇
  2016年   106篇
  2015年   67篇
  2014年   86篇
  2013年   79篇
  2012年   44篇
  2011年   60篇
  2010年   62篇
  2009年   66篇
  2008年   49篇
  2007年   29篇
  2006年   32篇
  2005年   24篇
  2004年   25篇
  2003年   24篇
  2002年   30篇
  2001年   15篇
  2000年   17篇
  1999年   15篇
  1998年   15篇
  1997年   13篇
  1996年   6篇
  1995年   11篇
  1994年   12篇
  1993年   5篇
  1992年   6篇
  1991年   11篇
  1990年   14篇
  1989年   8篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1975年   1篇
  1974年   4篇
  1973年   6篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1960年   1篇
  1950年   1篇
排序方式: 共有1183条查询结果,搜索用时 625 毫秒
721.
Headwaters are generally assumed to contribute the majority of water to downstream users, but how much water, of what quality and where it is generated are rarely known in the humid tropics. Here, using monthly monitoring in the data scarce (2,370 km2) San Carlos catchment in northeastern Costa Rica, we determined runoff-area relationships linked to geochemical and isotope tracers. We established 46 monitoring sites covering the full range of climatic, land use and geological gradients in the catchment. Regression and cluster analysis revealed unique spatial patterns and hydrologically functional landscape units. These units were used for seasonal and annual Bayesian tracer mixing models to assess spatial water source contributions to the outlet. Generally, the Bayesian mixing analysis showed that the chemical and isotopic imprint at the outlet is throughout the year dominated by the adjacent lowland catchments (68%) with much less tracer influence from the headwaters. However, the headwater catchments contributed the bulk of water and tracers to the outlet during the dry season (>50%) despite covering less than half of the total catchment area. Additionally, flow volumes seemed to be linearly scaled by area maintaining a link between the headwaters and the outlet particularly during high flows of the rainy season. Stable isotopes indicated mean recharge elevations above the mean catchment altitude, which further supports that headwaters were the primary source of downstream water. Our spatially detailed “snap-shot” sampling enabled a viable alternative source of large-scale hydrological process knowledge in the humid tropics with limited data availability.  相似文献   
722.
The coastal lagoon‐beach complex at the Cíes Islands located at the opening of the Ría de Vigo (NW Iberia) is an important ecosystem currently threatened by anthropogenic impacts and climate variations. We used multiproxy marine sediment analyses to reconstruct the millennial environmental dynamics of this insular system and, in particular, the recent history of its coastal lagoon. Geophysical surveys were used to obtain bathymetry and identify the major sedimentary units of its closest submarine basin as well as their sediment sources. Core samples were taken in the middle and distal parts of the sedimentary body, where several prograding sedimentary units are thinner, allowing continuous sampling of the facies. Lithological, textural, elemental and chronological analyses were carried out on two cores. The detailed palynological studies on one of the cores included the analyses of the pollen, non‐pollen palynomorphs and dinocysts dating back three millennia. Our results revealed noticeable environmental changes affecting this area during the last 3000 years, due mainly to changing climate and oceanic conditions but also to the impact of historic human occupation of the islands. Several cold events (the 2.8 ka BP event and the Little Ice Age) characterized by enhanced upwelling alternated with warmer stormy periods of prevailing downwelling conditions in the ria. These circumstances altered the balance amongst the lacustrine, marsh, dune and lagoon systems, opening ephemeral inlets and modifying the trophic stage of the shallow waters surrounding the archipelago. Here we provide a background of the human and climatic impacts affecting these highly sensitive habitats, which may serve to improve their future management strategies.  相似文献   
723.
The Uummannaq region is a mosaic of glacial landsystems, consistent with hypothesized landscape distribution resulting from variations in subglacial thermal regime. The region is dominated by selective linear erosion that has spatially and altitudinally partitioned the landscape. Low altitude areas are dominated by glacial scour and higher elevations are dominated by plateaux or mountain valley and cirque glaciers. The appearance and nature of each landscape type varies locally with altitude and latitude, as a function of bedrock geology and average glacial conditions. Selective linear erosion has been a primary control on landscape distribution throughout Uummannaq, leading to plateau formation and the growth of a coalescent fjord system in the Uummannaq region. This has allowed the development of the Uummannaq ice stream's (UIS) onset zone during glacial periods. Fjord development has been enhanced by a downstream change in geology to less‐resistant lithologies, increasing erosional efficiency and allowing a single glacial channel to develop, encouraging glacier convergence and the initiation of ice streaming. The landscape has been affected by several periods of regional uplift from 33 Ma to present, and has been subject to subsequent fluvial and glacial erosion. Uplift has removed surfaces from the impact of widespread warm‐based glaciation, leaving them as relict landsurfaces. The result of this is a regional altitude‐dependent continuum of glacial modification, with extreme differences in erosion between high and low elevation surfaces. This study indicates that processes of long‐term uplift, glacial erosion/protection and spatial variability in erosion intensity have produced a highly partitioned landscape.  相似文献   
724.
Las Tablas de Daimiel National Park is one of Spain's most representative groundwater‐dependent ecosystems. Under natural conditions, water inflows combined brackish surface water from River Gigüela with freshwater inputs from River Guadiana and the underlying aquifer. Since the mid‐1970s, aquifer overexploitation caused the desiccation of the wetlands and neighbouring springs. The National Park remained in precarious hydrological conditions for three decades, with the only exception of rapid floods due to extreme rainfall events and sporadic water transfers from other basins. In the late 2000s, a decrease in groundwater abstraction and an extraordinarily wet period reversed the trend. The aquifer experienced an unexpected recovery of groundwater levels (over 20 m in some areas), thus restoring groundwater discharge to springs and wetlands. The complex historical evolution of the water balance in this site has resulted in substantial changes in surface and groundwater quality. This becomes evident when comparing the pre‐1980 groundwater quality and the hydrochemical status in the wetland in two different periods, under “dry” and “wet” conditions. Although the system is close to full recovery from the groundwater‐level viewpoint, bouncing back in the major hydrochemical constituents has not yet been obtained. These still appear to evolve in response to the previous overexploitation state. Moreover, in some sectors, there are groundwater‐dependent ecosystems that remain different to those found in preoverexploitation times. The experience of Las Tablas de Damiel provides an observatory of long‐term changes in wetland water quality, demonstrating that the effects of aquifer overexploitation on aquatic ecosystems are more than a mere alteration of the water balance and that groundwater quality is the key to aquifer and aquatic ecosystem sustainability.  相似文献   
725.
Soil loss, fluvial erosion, and sedimentation are major problems in semi‐arid environments due to the high associated costs of decreasing services such as provisioning and regulating water resources. The objective of this research is to analyse sediment yield in a mountainous semi‐arid basin, paying special attention to the sources of sediment, the associated uncertainties, and the transport processes involved. The segregation hypothesis along a reservoir of the sediment coming from hillslopes or fluvial systems is also evaluated. For this purpose, bottom‐set and deltaic deposits of a reservoir (110 hm3 ) in southern Spain have been measured and compared with basin erosion and fluvial transport monitoring over a 12‐year period. The volume of sediment stored at the bottomset of the reservoir shows a relative match with parametric predictions based on the Revised Universal Soil Loss Equation/Modified Universal Soil Loss Equation hillslope models and rating curves, estimated as being between 7 and 13 t·ha?1·year?1. Similarly, the measured volume of deltaic deposit fits the average value of stochastic simulations from different bedload transport equations. These contributions represent 50–65% of the total volume measured regarding suspended sediment inputs, way above that described in previous works. This highlights the importance of considering bedload when estimating the useful life of reservoirs in semi‐arid environments. The major differences in sediment grain size between hillslopes and river systems, and the size fractions measured along the reservoir, support the assertion of segregation hypothesis. Nonetheless, based on the processes observed and the uncertainty related to modelling, that assertion has to be taken with caution. At basin scale, a specific sediment yield of between 19 and 24 t·ha?1·year?1 has been estimated, which includes hillslopes and fluvial contributions. This rate is in the range of sediment yield reported for Mediterranean mountain areas of a torrential character. The pulse‐like nature of the system and the spatial heterogeneity of fluvial and hillslope erosion rates points out the importance of considering mid to long‐term and process‐based approaches and emphasizes the limitations of annual estimations for management purposes.  相似文献   
726.
A closed form solution to the minimum DVtot2{\Delta V_{\rm tot}^2} Lambert problem between two assigned positions in two distinct orbits is presented. Motivation comes from the need of computing optimal orbit transfer matrices to solve re-configuration problems of satellite constellations and the complexity associated in facing these problems with the minimization of DVtot{\Delta V_{\rm tot}}. Extensive numerical tests show that the difference in fuel consumption between the solutions obtained by minimizing DVtot2{\Delta V_{\rm tot}^2} and DVtot{\Delta V_{\rm tot}} does not exceed 17%. The DVtot2{\Delta V_{\rm tot}^2} solution can be adopted as starting point to find the minimum DVtot{\Delta V_{\rm tot}}. The solving equation for minimum DVtot2{\Delta V_{\rm tot}^2} Lambert problem is a quartic polynomial in term of the angular momentum modulus of the optimal transfer orbit. The root selection is discussed and the singular case, occurring when the initial and final radii are parallel, is analytically solved. A numerical example for the general case (orbit transfer “pork-chop” between two non-coplanar elliptical orbits) and two examples for the singular case (Hohmann and GTO transfers) are provided.  相似文献   
727.
728.
729.
730.
The goal of the CLARIS project was to build an integrated European–South American network dedicated to promote common research strategies to observe and predict climate changes and their consequent socio-economic impacts taking into account the climate and societal peculiarities of South America. Reaching that goal placed the present network as a privileged advisor to contribute to the design of adaptation strategies in a region strongly affected by and dependent on climate variability (e.g. agriculture, health, hydro-electricity). Building the CLARIS network required fulfilling the following three objectives: (1) The first objective of CLARIS was to set up and favour the technical transfer and expertise in earth system and regional climate modelling between Europe and South America together with the providing of a list of climate data (observed and simulated) required for model validations; (2) The second objective of CLARIS was to facilitate the exchange of observed and simulated climate data between the climate research groups and to create a South American high-quality climate database for studies in extreme events and long-term climate trends; (3) Finally, the third objective of CLARIS was to strengthen the communication between climate researchers and stakeholders, and to demonstrate the feasibility of using climate information in the decision-making process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号