首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
大气科学   3篇
地球物理   11篇
地质学   14篇
海洋学   7篇
天文学   5篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
41.
Abstract. A high frequency deep-tow seismic survey was carried out in the Nankai Trough area in 1996. The objective of the survey was to obtain high resolution seismic sections and velocity profiles of the methane hydrate zone, inferred from the strong BSR events seen on conventional seismic data in the area. A special feature of the survey is that both the source and the streamer cable are towed close to the seabed. This special acquisition geometry requires special data processing to handle the varying source and receiver depths. A CMP floating datum processing sequence was designed which led to high quality sections of the shallow geology. A key step in the processing was devising a residual statics technique to compensate for errors in the measured depths.
The processing sequence was applied to a number of lines, totaling 200 km. The final data quality was highly variable. Some lines produced high quality sections and others, much poorer sections with few interpretable events. Conventional seismic data in the area also shows variation in the data quality so part of the reason is a variation in the sub-sea geology, but the deep-tow data is much more sensitive to change in conditions than conventional data. With the current acquired data and processing sequence the deep-tow system offers most advantages when 1) the water depth is around 1 km or greater, 2) the seabed and underlying geology is not too complex, and 3) the acquisition proceeds smoothly with regular shotpoints, slowly varying depths, and with accurate positioning.  相似文献   
42.
The Solomon Sea region is an area of intense tectonic activity characterized by structural complexity, a high level of seismicity and volcanism, and rapid evolution of plate boundaries. There is little accretion in the eastern New Britain Trench. Accretion gradually increases westward with thick accretion in the western New Britain Trench and in the Trobriand Subduction System. The thick accretion in the western part of the New Britain Trench may be a result of collision from the north of Finisterre-Huon block with New Guinea mainland. The present boundary of the collision is along the Ram-Markham fault. Deformation structures and present day seismicity suggest that the northern block is under compression.

Accretion has occurred in the sediment filled trenches in the Solomon Sea. The scale of the accretionary wedge depends on the amount of trench-fill sediment available. It is unlikely that there is no sediment supply to the eastern part of the New Britain Trench where no accretion is observed and subduction erosion may be occurring. There are two possible mechanisms for subduction erosion of sediment; either a rapid rate of subduction relative to the supply of sediment inhibiting sediment accumulation in the trench; or horizontal tensional force superimposed on both the forearc and backarc regions of the arc. Seafloor spreading in both the Manus and Woodlark basins is fan-like with nearby poles in the western margins of the basins. This may be a reflection of a horizontally compressional field in the western part and a tensional field in the eastern part of the Solomon Sea. Therefore it is possible to conclude that the consumption of sediment in the eastern New Britain Trench is related to the horizontal tensional field superimposed on both the forearc and backarc regions of the subduction system.

Imbricated thrust and overthrust faults in the western New Britain Trench and Trobriand Trough are not linear over long distance, but form wavy patterns in blocks with unit distance of approximately 10 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号