全文获取类型
收费全文 | 63篇 |
免费 | 0篇 |
国内免费 | 24篇 |
专业分类
大气科学 | 6篇 |
地球物理 | 1篇 |
地质学 | 1篇 |
海洋学 | 25篇 |
综合类 | 54篇 |
出版年
2021年 | 2篇 |
2020年 | 3篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2014年 | 4篇 |
2013年 | 4篇 |
2012年 | 7篇 |
2011年 | 1篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 3篇 |
2007年 | 1篇 |
2004年 | 10篇 |
2003年 | 3篇 |
2001年 | 2篇 |
1999年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1993年 | 4篇 |
1992年 | 1篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 4篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1984年 | 3篇 |
1983年 | 1篇 |
排序方式: 共有87条查询结果,搜索用时 15 毫秒
11.
Long-term variabilities of thermodynamic structure of the East China Sea Cold Eddy in summer 总被引:6,自引:0,他引:6
Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold Eddy (ECSCE) in summer was analyzed in relationship to ocean circulation and local atmospheric circulation. Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyseswere applied to this study. The results show that: l) The ECSCE in summer possesses significant interannual variabilities, which are directly associated with oceanic and atmospheric circulation anomaly. Main fluctuations demonstrate their falling in basically with E1 Nino events (interannual) and interdecadal variability. 2) The ECSCE in summer is closely related to the variation of the Yellow Sea Warm Current (YSWC) and the Changjiang River discharge. The stronger the YSWC, the more intensive the ECSCE with its center shifting westward,and vice versa. However, a negative correlation between the Changjiang River discharge and the ECSCE strength is shown. The ECSCE was strengthened after the abrupt global climate change affected by the interdecadal variation of the YSWC. 3) SVD analysis suggested a high correlation between the variation of the ECSCE in summer and the anomalous cyclonic atmospheric circulation over the ECS. Intensification of the cyclonic wind strengthens the ECSCE, and vice versa. 4) The cyclonic atmospheric circulation has dominant influence on the interannual variation of the ECSCE, and the influence of the ocean circulation takes the second in. The ECSCE was usually stronger in E1 Nifio years affected by strong cyclonic circulation in the atmosphere. The variation in strength of the ECSCE resulted from the joint effect of both oceanic and atmospheric circulation. 相似文献
12.
The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon(BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature data from the Japan Metorology Agency(JMA).Results showed that the onset time of the BOBSM is highly related to the tropical Pacific upper ocean heat content(HC),especially in the key region of the western Pacific warm pool(WPWP),during the preceding winter and spring.When the HC anomalies in the WPWP are positive(negative),the onset of the BOBSM is usually early(late).Accompanied by the variation of the convection activity over the WPWP,mainly induced by the underlying ocean temperature anomalies,the Walker circulation becomes stronger or weaker.This enhances or weakens the westerly over the tropical Indian Ocean flowing into the BOB in the boreal spring,which is essential to BOBSM onset.The possible mechanism of influence of cyclonic/anti-cyclonic circulation over the northwestern tropical Pacific on BOBSM onset is also discussed. 相似文献
13.
Seasonal variability of the Mindanao Current determined using mooring observations from 2010 to 2014
Fujun Wang Qingye Wang Dunxin Hu Fangguo Zhai Shijian Hu 《Journal of Oceanography》2016,72(5):787-799
A mooring was deployed east of Mindanao Island at 8°N, 127°3′E from December 2010 to August 2014 to collect direct measurements of the Mindanao Current (MC). The Acoustic Doppler Current Profiler (ADCP) fixed on the main float shows that the MC is a strong and stable southward flow with a standard deviation less than 21 cm/s in the upper 500 m. The core flows between depths of 50 and 100 m with a maximum mean speed of 78 cm/s at 100 m. The seasonal variability of MC varies interannually and is depth-dependent. Although it takes a double-peak structure in the upper 200 m with two maxima in April and June and one minimum in October, the MC velocity has its maximum during boreal summer (June) and a minimum in autumn (September) when a 100-day low-pass filter is applied to remove intraseasonal signals. The semiannual signals are mainly limited between 200 and 350 m. The Asian monsoon intensifies the wind-driven sea-surface height anomaly (SSHA) east of Mindanao Island, and the resulting sharp slope induces meridional flow with large variability. Rossby waves and the boundary effect weaken the contribution of wind, stabilizing the flow of MC. The MC is determined by the zonal gradient of the SSHA rather than the SSHA itself, suggesting a possible inconsistency in seasonality between the Mindanao Eddy (ME) and MC. The semiannual ME signal plays an important role in the seasonal variability of MC. 相似文献
14.
LIU Zhiliang HU Dunxin CHU Zhongxin 《中国海洋大学学报(英文版)》2008,7(1):17-26
Long term current observations in the southern Yellow Sea are very scarce because of the intense fishing and trawling activities. Most of the previous studies on tides and circulation were not rigorously validated with direct current measurements. In this study, tidal and sub-tidal currents were examined using current profiles from three bottom-moored Sontek Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea in the summers of 2001 and 2003. The measured current time series were dominated by tidal currents. The maximum velocities were between 40-80 cm s^-1 at the mooring stations. The M2 current was the dominant primary tidal constituent, while the MS4 and M4 components produced the most significant shallow water tidal currents with much weaker amplitudes. The measured mean sub-tidal velocities were less than 5 cmsl. The mean flows in the lower layer implied that an anti-cyclonic circulation pattern might exist in the deeper central Yellow Sea. However, the previously expected cyclonic circulation pattern in the upper layer was not clearly shown by the observations. 相似文献
15.
The spatiotemporal variability of equatorial Pacific upper ocean heat content (HC) and subsurface heat during two types of El Niño-Southern Oscillation (ENSO), namely eastern and central Pacific (EP and CP) types, is investigated using subsurface ocean heat budget analysis. Results show that HC tendencies during both types of ENSO are mainly controlled by oceanic heat advection beneath the mixed layer to the thermocline, and the role of net surface heat flux can be neglected. The most important three terms are the zonal and vertical advections of anomalous heat by climatological currents (QU 0 T′, QW 0 T′) and zonal advection of climatological heat by anomalous current (QU′T 0). The large contribution of QU 0 T′ extends from west to east along the equatorial Pacific. The considerable contribution of QU′T 0 is confined to the east of 160°W, and that of the QW 0 T′ is observed in the central Pacific between 180°E and 120°W. In particular, a major contribution of QW 0 T′ is also observed in the far eastern Pacific east of 100°W during EP ENSO. There is also a small contribution from meridional advection of climatological heat by anomalous current (QV′T 0). In contrast, the meridional advection of anomalous heat by climatological currents (QV 0 T′) and vertical advection of climatological heat by anomalous current (QW′T 0) are two damping factors in the HC tendency, with the former dominating. Differences in spatial distribution of the heat advection associated with the two types of ENSO are also presented. We define a warm water heat index (WWH) as integrated heat content above 26 kg m?3 potential density (26σ ? ) isopycnal depth within 130°E–80°W and 5°S–5°N. Further examination suggests that the recharge–discharge of WWH is involved in both types of El Niño, though with some differences. First, it takes about 42 (55) months for the evolution of a recharge–discharge cycle during an EP (CP) ENSO. Second, the EP El Niño event peaks during the discharge phase, 7–8 months after the recharge time. The CP El Niño peaks during the recharge phase, 4–5 months before the recharge time. The locations of HC anomalies in the El Niño mature phase relative to those at recharged time explain why the EP and CP El Niño peak in different stages of the recharge–discharge process. 相似文献
16.
How does the Indian Ocean subtropical dipole trigger the tropical Indian Ocean dipole via the Mascarene high? 总被引:1,自引:0,他引:1
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST)data during the period 1958–2010.All the first empirical orthogonal function(EOF)modes of the SST anomalies(SSTA)in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o–Southern Oscillation(ENSO)phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone)circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean. 相似文献
18.
Principal component analysis (PCA) as used by meteorologists and oceanographers is a powerful tool for analysis of the spatial and temporal variability of physical fields. This study was aimed at applying “quasi-local PCA for singular factor” to make the cumulative percentage for the first principal component as great as possible, so that a multi-dimensional problem can be reduced to a single-dimensional one, and then stepwise regression analysis can be used to parameterize the relationship between El Niño events and the hydrographic factor anomalies along 137 °E in winter. The results show that the salinity anomalies on 30 m level, the sigmat on 250 m level, and the temperature on 300 m level at 8 °N are most closely related with El Niño events because of thermocline movement caused by enhanced upwelling in this area during El Niño years. 相似文献
19.
Fujun Wang Linlin Zhang Dunxin Hu Qingye Wang Fangguo Zhai Shijian Hu 《Journal of Oceanography》2017,73(6):743-758
In this work, the vertical structure and variability along the western boundary of the Philippines are investigated using direct observations from acoustic Doppler current profiler (ADCP), Doppler volume sampler (DVS) and Aanderaa Seaguard instruments, which are mounted on a subsurface mooring deployed at 8°N, 127°3′E. In climatology, the southward Mindanao Current (MC) and northward Mindanao Undercurrent (MUC) play a dominant role in the upper layer. The mean currents at 1200 and 3500 m flow northward, whereas those at 2500 and 5600 m flow equatorward. The power spectral density (PSD) shows that an intraseasonal signal of 60–80 days is common from the sea surface to the bottom. The semiannual signals are strongest in the MUC layer, and the amplitude then decreases with depth to 3500 m. The seasonal variability at 2500 and 5600 m is similar between the two depths, suggesting a southward current in winter and northward flow in autumn. The current at 3500 m exhibits a northward direction in spring and southward flow in winter. In addition, the linear correlations between mooring data and altimetry products indicate that the variations in surface meridional currents along the western boundary of the Pacific Ocean can reach the bottom via low-frequency processes. The vertical-mode decomposition for observations indicates that the first four modes can effectively capture the original data. The relative contributions of different modes exhibit seasonal variability. The first baroclinic mode plays a dominant role in spring and autumn. In winter and summer, its contribution decreases and becomes comparable to that of the other modes. 相似文献
20.