首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   33篇
  国内免费   8篇
测绘学   27篇
大气科学   53篇
地球物理   204篇
地质学   315篇
海洋学   100篇
天文学   216篇
综合类   4篇
自然地理   88篇
  2021年   12篇
  2020年   14篇
  2019年   21篇
  2018年   22篇
  2017年   23篇
  2016年   26篇
  2015年   16篇
  2014年   27篇
  2013年   55篇
  2012年   15篇
  2011年   47篇
  2010年   23篇
  2009年   39篇
  2008年   39篇
  2007年   43篇
  2006年   37篇
  2005年   37篇
  2004年   42篇
  2003年   30篇
  2002年   30篇
  2001年   35篇
  2000年   29篇
  1999年   25篇
  1998年   21篇
  1997年   12篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   17篇
  1992年   18篇
  1991年   17篇
  1990年   6篇
  1989年   17篇
  1988年   8篇
  1987年   19篇
  1986年   5篇
  1985年   14篇
  1984年   20篇
  1983年   12篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   6篇
  1978年   12篇
  1976年   6篇
  1975年   11篇
  1973年   5篇
  1971年   6篇
  1970年   6篇
  1966年   5篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
51.
The possibility of recrystallization is a long‐standing barrier to deciphering the genetic origin of dolomites. There is often uncertainty regarding whether or not characteristics of ancient dolomites are primary or the consequence of later recrystallization unrelated to the original dolomitization event. Results from 65 new high‐temperature dolomite synthesis experiments (1 m , 1·0 Mg/Ca ratio solutions at 218°C) demonstrate dolomite recrystallization affecting stoichiometry, cation ordering and nanometre‐scale surface texture. The data support a model of dolomitization that proceeds by a series of four unique phases of replacement and recrystallization, which occur by various dissolution–precipitation reactions. During the first phase (induction period), no dolomite forms despite favourable conditions. The second phase (replacement period) occurs when Ca‐rich dolomite products, with a low degree of cation ordering, rapidly replace calcite reactants. During the replacement period, dolomite stoichiometry and the degree of cation ordering remain constant, and all dolomite crystal surfaces are covered by nanometre‐scale growth mounds. The third phase (primary recrystallization period), which occurs in the experiments between 97% and 100% dolomite, is characterized by a reduced replacement rate but concurrent increases in dolomite stoichiometry and cation ordering. The end of the primary recrystallization period is marked by dolomite crystal growth surfaces that are covered by flat, laterally extensive layers. The fourth phase of the reaction (secondary recrystallization period) occurs when all calcite is consumed and is characterized by stoichiometric dolomite with layers as well as a continued increase in the degree of cation ordering with time. Inferences of recrystallization, in natural dolomite, based on cation order or stoichiometry of dolomite, usually depend on assumptions about the precursor dolomite subjected to recrystallization. If it is assumed that the experimental evidence presented here is applicable to natural, low‐temperature dolomites, then the presence of mounds is direct evidence of a lack of recrystallization and the presence of layers is direct evidence of recrystallization.  相似文献   
52.
The 1928 eruption of Etna, Sicily, although the largest such event this century, has not been studied in detail. In this paper the nature of the eruption, the destruction it caused – including the complete devastation of the town of Mascali (pre-eruption population 2,000) – and emergency responses of the authorities to it are reviewed in the context of fascist politics and planning priorities. It is contended that, although at one level the response to the 1928 eruption was successful, at another fascism merely continued and enhanced a reactive, propitiatory approach to hazard mitigation. We argue that this legacy was not successfully overcome until the middle of the nineteen eighties. Finally contemporary Italian moves towards a more proactive approach to disaster planning, both generally and in the context of Etna, are discussed.  相似文献   
53.
Given a compositional dataset in the absence of any prior information on any mixing process which may have formed it, a complete analysis of mixtures determines three distinct types of estimates in order. These are: (i) the estimate of the number of endmembers or fixed source compositions, of which all the sample compositions of the dataset must be approximate mixtures; (ii) the estimated compositions for each of these chosen number of endmembers; and (iii) the estimated contributions of each of these endmember estimates to each sample. Traditionally, the estimate for the number of endmembers has been assessed either by mapping or by inspection of the coefficients of determination between the observed and estimated variables. Mapping entails the plotting on a map of the region from which the samples were taken, either the contours of the contributions of each endmember to each sample, or some other portrayal of the distribution of endmember abundances. Because it requires the complete analysis, assessment by this method is too elaborate except for final confirmation and display. Alternatively, choosing a number of endmembers, which result in suitability high coefficients of determination for all or most variables, may account for elements which are not part of the conjectured mixing process or, worse, may result in the identification of endmembers which may never in fact have existed. Such an error is similar to overspecifying a multiple regression model. So, the obvious starting point from which to assess the validity, or otherwise choice of endmember numbers, is to examine the matrix of residuals. The differences between the logratio-transformed observed and estimated data form an array of residual logratios. A linear combination of these may be formed for each sample, which, under a random perturbation assumption, should follow a univariate normal distribution. Whether or not this scalar is normal can be readily tested. It can also be examined graphically for such desirable qualities as symmetry when the test for normality may be too severe. This procedure is employed to assess the decompositions of the U.S.G.S. Mid-Pacific data and the Nazca Plate Surface sediments.This paper was presented at the 18th Geochautauqua, Newark, Delaware, 13–14 October 1989.  相似文献   
54.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   
55.
The Miocene-Oligocene volcanism of this region is part of the larger Tertiary volcanic province found throughout E. Australia. Within the S.E. Queensland region, the volcanism is strongly bimodal, and has emanated from six major centres, and many additional smaller centres. The mafic lavas (volumetrically dominant) range continuously from ne-normative through to Q-normative and are predominantly andesine-normative; Mg/Mg+Fe (atomic ratios range from 30–60; K2O ranges from 0.42–2.93%, and TiO2 from 0.81–3.6%.Phenocryst contents are low (averaging 6.7 vol.%), and comprise olivine (Fa18–75; Cr-spinel inclusions occur locally in Mg-rich phenocrysts), plagioclase (An25–68), and less commonly augite, which is relatively aluminous in lavas of the Springsure volcanic centre. Very rare aluminous bronzite occurs in certain Q-normative lavas. Groundmass minerals comprise augite, olivine (Fa33–77), feldspar (ranging from labradorite through to anorthoclase and sanidine), Fe-Ti oxides, and apatite. Within many of the Q-normative lavas, extensive development of subcalcic and pigeonitic pyroxenes occurs, and also relatively rarely orthopyroxene. Mineralogically, the ne- and ol-normative lavas, and some of the Q-normative lavas are indistinguishable, and in view of the gradations in chemistry, the term hawaiite has been extended to cover these lavas. The term tholeiitic andesite is used to describe the Q-normative lavas containing Ca-poor pyroxenes as groundmass phases.Megacrysts of aluminous augite, aluminous bronzite, olivine, ilmenite, and spinel sporadically occur within the lavas, and their compositions clearly indicate that they are not derived from the Upper Mantle. Rare lherzolite xenoliths are also found.The petrogenesis of these mafic lavas is approached by application of the thermodynamic equilibration technique of Carmichael et al. (1977), utilizing three parental mineral assemblages that could have been in equilibrium with the magmas at P and T. The models are: (a) standard upper mantle mineralogy; (b) an Fe-enriched upper mantle model (Wilkinson and Binns 1977); (c) lower crust mineralogy, based on analysed megacryst compositions. The calculations suggest that these mafic magmas were not in equilibrium with either mantle model prior to eruption, but show much closer approaches to equilibrium with the lower crust model. Calculated equilibration temperatures and pressures (for the lower crust model) range from 995°–l,391° C (average 1,192), and 7.2–16.3 kb (average 12.4). These results are interpreted in terms of a model of intrusion and magma fractionation within the crust-mantle interface region, with consequent crustal underplating and thickening beneath the Tertiary volcanic regions. Some support for the latter is provided by regional isostatic gravity anomalies and physiographic considerations.  相似文献   
56.
The Laurentide Ice Sheet was characterized by a dynamic polythermal base. However, important data and knowledge gaps have led to contrasting reconstructions in areas such as the Labrador Ice Divide. In this study, detailed fieldwork was conducted at the southeastern edge of a major landform boundary to resolve the relative ice flow chronology and constrain the evolution of the subglacial dynamics, including the migration and collapse of the Labrador Ice Divide. Surficial mapping and analysis of 94 outcrop‐scale ice flow indicators were used to develop a relative ice flow chronology. 10Be exposure ages were used with optical ages to confine the timing of deglaciation within the study area. Four phases of ice flow were identified. Flow 1 was a northeasterly ice flow preserved under non‐erosive subglacial conditions associated with the development of an ice divide. Flow 2 was a northwest ice flow, which we correlate to the Ungava Bay Ice Stream and led to a westward migration of the ice divide, preserving Flow 2 features and resulting in Flow 3's eastward‐trending indicators. Flow 4 is limited to sparse fine striations within and around the regional uplands. The new optical ages and 10Be exposure ages add to the regional geochronology dataset, which further constrains the timing of ice margin retreat in the area to around 8.0 ka. Copyright © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   
57.
Most previous studies and applications of electrochemical stabilization of soils through electroosmosis have been made on clayey soils. The object of this investigation was to find out if relatively small amounts of clay (1.5%–3.5%, by weight) present in a sandy soil would be enough for stabilization and strengthening to be possible. The results indicate increases of cohesion of the order of 100–200 lb./sq.ft. X-ray analyses of treated soils indicate that sheet structures of clays are reduced and silicates destroyed upon treatment by electroosmosis. Newly-formed minerals also cement the soil. These neoformations include gibbsite, limonite, calcite, hydrohematite, hydrogoethite (hydrolepidocrocite), hisingerite, allophane, allophanoid, gypsum, hematite, magnetite, nontronite, trona and natron (Na2 CO3, 10H2O). The process seems to be irreversible.  相似文献   
58.
59.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   
60.
This study represents the first detailed investigation of platinum-group elements (PGEs) in road-deposited sediment (RDS) in Hawaii, USA. Thirty-three sample locations, in two urban watersheds in Honolulu, Oahu, Hawaii were sampled. The <63 μm fraction of RDS was digested with aqua regia, followed by matrix separation with Dowex AG50-X8 cation exchange resin. PGEs were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) equipped with a desolvating nebulizer. Concentrations of Rh, Pd and Pt in residential streets reached 64, 105 and 506 ng/g, respectively. Maximum enrichment ratios, computed as RDS concentrations relative to baseline values, exceeded 400, indicating a significant anthropogenic signal with the sequence Rh > Pt > Pd. Iridium concentrations were uniformly low <1 ng/g, and enrichment ratios support a geogenic source. Significant interelement PGE correlations (Pd–Pt–Rh), combined with the magnitude of PGE pair-wise ratios (Pt/Pd, Pt/Rh and Pd/Rh), and relative percentages comparable to European RDS and roadside soil in Indiana, USA all suggest an automobile source. Attrition of PGE-loaded automobile catalytic converters and subsequent loss to the environment by exhaust emissions explains the significant environmental signal of PGEs in road environments of Hawaii. Further PGE work is required to quantify urban transport paths as PGEs are known to bioaccumulate, cause cellular damage and may have detrimental human health effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号