首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30470篇
  免费   387篇
  国内免费   265篇
测绘学   644篇
大气科学   2858篇
地球物理   6602篇
地质学   11765篇
海洋学   2064篇
天文学   5419篇
综合类   41篇
自然地理   1729篇
  2018年   291篇
  2017年   269篇
  2016年   420篇
  2015年   303篇
  2014年   426篇
  2013年   1238篇
  2012年   520篇
  2011年   797篇
  2010年   652篇
  2009年   932篇
  2008年   845篇
  2007年   811篇
  2006年   851篇
  2005年   735篇
  2004年   768篇
  2003年   727篇
  2002年   729篇
  2001年   598篇
  2000年   618篇
  1999年   591篇
  1998年   575篇
  1997年   593篇
  1996年   534篇
  1995年   502篇
  1994年   477篇
  1993年   463篇
  1992年   517篇
  1991年   474篇
  1990年   513篇
  1989年   427篇
  1988年   470篇
  1987年   544篇
  1986年   450篇
  1985年   588篇
  1984年   669篇
  1983年   680篇
  1982年   598篇
  1981年   588篇
  1980年   582篇
  1979年   555篇
  1978年   544篇
  1977年   494篇
  1976年   480篇
  1975年   469篇
  1974年   496篇
  1973年   499篇
  1972年   351篇
  1971年   312篇
  1970年   249篇
  1968年   232篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, 18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5 at 5760 m depth. In contrast, feldspar 18O values decrease with depth from near 10 at the surface to 7.1 at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of 18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar 18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100–300° C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500° C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event.  相似文献   
52.
53.
54.
55.
A generalized database of global palaeomagnetic data from 3719 lava flows and thin dykes of age 0–5 Ma has been constructed for use with a relational database management system. The database includes all data whose virtual geomagnetic poles (VGP) lie within 45 of the spin axis and can be used for studies of palaeosecular variation and for geomagnetic field modelling. Because many of these data were collected and processed more than 15–20 years ago, each result has been characterized according to the demagnetization procedures carried out. Analysis of these data in terms of the latitude variation of the angular dispersion of VGPs (palaeosecular variation from lavas) strongly suggests that careful data selection is required and that many of the older studies may need to be redone using more modern methods. Differences between the angular dispersions for separate normal- and reverse-polarity data sets confirm that many older studies have not been adequately cleaned magnetically. Therefore, the use of the database for geomagnetic field modelling should be carried out with some caution. Using a VGP cut-off angle that varies with latitude, the best data set consists of 2636 results that show a smooth increase of VGP angular dispersion with latitude. Model G for palaeosecular variation, which is based on modelling of the antisymmetric (dipole) and symmetric (quadrupole) dynamo families, provides a good fit to these results.  相似文献   
56.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   
57.
58.
Rainfall thresholds for landsliding in the Himalayas of Nepal   总被引:5,自引:0,他引:5  
Landsliding of the hillslope regolith is an important source of sediment to the fluvial network in the unglaciated portions of the Himalayas of Nepal. These landslides can produce abrupt increases of up to three orders of magnitude in the fluvial sediment load in less than a day. An analysis of 3 years of daily sediment load and daily rainfall data defines a relationship between monsoonal rainfall and the triggering of landslides in the Annapurna region of Nepal. Two distinct rainfall thresholds, a seasonal accumulation and a daily total, must be overcome before landslides are initiated. To explore the geomorphological controls on these thresholds, we develop a slope stability model, driven by daily rainfall data, which accounts for changes in regolith moisture. The pattern of rainfall thresholds predicted by the model is similar to the field data, including the decrease in the daily rainfall threshold as the seasonal rainfall accumulation increases. Results from the model suggest that, for a given hillslope, regolith thickness determines the seasonal rainfall necessary for failure, whereas slope angle controls the daily rainfall required for failure.  相似文献   
59.
René Rutten, Director of the Isaac Newton Group of Telescopes, sets the scene for future developments in international astronomy on La Palma.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号