This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations in ψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψ function of Fairall et al. (1996) (i.e., Fairall96, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range ?2.6 ? RiB < ?0.1; when conditions become weakly unstable (?0.1 ? RiB < ?0.01), Fairall96 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (?0.01 ? RiB < 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairall96 are similar, with Edson04 being the best function but offering only a weak advantage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairall96 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0–5-m M slope, 5–40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
In operational data assimilation systems, observation-error covariance matrices are commonly assumed to be diagonal.However, inter-channel and spatial observation-error correlations are inevitable for satellite radiances. The observation errors of the Microwave Temperature Sounder(MWTS) and Microwave Humidity Sounder(MWHS) onboard the FengYun-3A(FY-3A) and FY-3B satellites are empirically assigned and considered to be uncorrelated when they are assimilated into the WRF model's Community Variational Data Assimilation System(WRFDA). To assimilate MWTS and MWHS measurements optimally, a good characterization of their observation errors is necessary. In this study, background and analysis residuals were used to diagnose the correlated observation-error characteristics of the MWTS and MWHS. It was found that the error standard deviations of the MWTS and MWHS were less than the values used in the WRFDA. MWTS had small inter-channel errors, while MWHS had significant inter-channel errors. The horizontal correlation length scales of MWTS and MWHS were about 120 and 60 km, respectively. A comparison between the diagnosis for instruments onboard the two satellites showed that the observation-error characteristics of the MWTS or MWHS were different when they were onboard different satellites. In addition, it was found that the error statistics were dependent on latitude and scan positions.The forecast experiments showed that using a modified thinning scheme based on diagnosed statistics can improve forecast accuracy. 相似文献
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI). 相似文献
A numerical study of stably stratified flow over a three-dimensional hill is presented. Large-eddy simulation is used here to examine in detail the laboratory experimental flows described in the landmark work of Hunt and Snyder about stratified flow over a hill. The flow is linearly stratified and U/Nh is varied from 0.2 to 1.0. Here N and U are the buoyancy frequency and freestream velocity respectively, and h is the height of the hill. The Reynolds number based on the hill height is varied from 365 to 2968. The characteristic flow patterns at various values of U/Nh have been obtained and they are in good agreement with earlier theoretical and experimental results. It is shown that the flow field cannot be predicted by Drazin's theory when recirculation exists at the leeside of the hill even at UNh 1. The wake structure agrees well with a two-dimensional wake assumption when U/Nh 1 but lee waves start to influence the wake structure as U/Nh increases. The dividing-streamline heights obtained in the simulation are in accordance with experimental results and Sheppard's formula. The energy loss along the dividing streamline due to friction/turbulence approximately offsets the energy gained from pressure field. When lee waves are present, linear theory always underestimates the amplitude and overestimates the wavelength of three-dimensional lee waves. The simulated variations of drag coefficients with the parameterK (=ND/ U) are qualitatively consistent with experimental data and linear theory. Here D is the depth of the tank. 相似文献
The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition(increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau. 相似文献
Based on combined thresholds of daily maximum and minimum temperatures, a compound heat wave is defined, and then changes in multiple aspects of such heat waves in China are estimated between 1961 and 2015. Our results intriguingly indicate that severe compound heat waves in northern China are characterized by excessively high intensity within short duration, while long duration determines great disaster-causing potential of severe events in the south. In the past few decades, large areas of China have experienced longer, stronger, and more frequent compound heat waves. Northern China has witnessed dramatic intensity increases, with a maximum amplification over 5°C decade–1; while remarkable lengthening in duration has been mostly recorded in the south, with a maximum trend over 1 day decade–1. The spatial extent affected by compound heat waves has significantly expanded since the 1960s, with the largest expanding rate over 6% decade–1 detected in North China and Northeast China. These systematic assessments serve to deepen our understanding of observed changes in compound heat waves across China, and may further shed some light on future adaptations and mitigations against an increasingly warming climate. 相似文献