首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   20篇
  国内免费   5篇
测绘学   8篇
大气科学   16篇
地球物理   110篇
地质学   153篇
海洋学   28篇
天文学   92篇
自然地理   18篇
  2023年   3篇
  2022年   10篇
  2021年   3篇
  2020年   16篇
  2019年   17篇
  2018年   15篇
  2017年   16篇
  2016年   25篇
  2015年   15篇
  2014年   14篇
  2013年   16篇
  2012年   25篇
  2011年   29篇
  2010年   18篇
  2009年   27篇
  2008年   20篇
  2007年   33篇
  2006年   18篇
  2005年   21篇
  2004年   16篇
  2003年   12篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有425条查询结果,搜索用时 656 毫秒
221.
222.
223.
The full moment tensor is a mathematical expression of six independent variables; however, on a routine basis, it is a common practice to reduce them to five assuming that the isotropic component is zero. This constraint is valid in most tectonic regimes where slip occurs entirely at the fault surface (e.g. subduction zones); however, we found that full moment tensors are best represented in transform fault systems. Here we present a method to analyze source complexity of earthquakes of different sizes using a simple formulation that relates the elastic constants obtained from independent studies with the angle between the slip and the fault normal vector, referred to as angle \( \theta \) ; this angle is obtained from the full moment tensors. The angle \( \theta \) , the proportion of volume change \( \left( k \right) \) and the constant volume (shear) component \( \left( T \right) \) are numerical indicators of complexity of the source; earthquakes are more complex as \( \theta \) deviates from \( \pi /2 \) or as T and k deviate from zero as well. These parameters are obtained from the eigensolution of the full moment tensor. We analyzed earthquakes in the Gulf of California that exhibit a clear isotropic component and we observed that the constant volume parameter T is independent of scalar moments, suggesting that big and small earthquakes are equally complex. In addition, simple models of one single fault are not sufficient to describe physically all the combinations of \( \theta \) in a source type plot. We also found that the principal direction of the strike of the Transform Fault System in the Gulf of California is following the first order approximation of the normal surface of the full moment tensor solution, whereas for deviatoric moment tensors the principal direction does not coincide with the strike of the Transform Fault System. Our observations that small and large earthquakes are equally complex are in agreement with recent studies of strike-slip earthquakes.  相似文献   
224.
A well‐replicated decadal‐term (2005–2014) stomach content data set was analysed in order to infer inter‐annual fluctuations in the diet of the Argentine hake, Merluccius hubbsi, an opportunistic predator in the San Jorge Gulf (SJG) ecosystem in the Southwest Atlantic. Ten research cruises were carried out each year during January from 2005 to 2014. A total of 18,461 specimens of Me. hubbsi was analysed, of which 6,777 (36.71%) contained food in their stomachs. The diet of Me. hubbsi changed markedly from 2011 onwards, with much greater consumption of the lobster krill Munida gregaria compared to the years before 2011. The frequency of occurrence (%F) of Mu. gregaria in the stomach contents of Argentine hake increased from the year 2009 onwards, most noticeably since 2011, and mostly over the southern region of the SJG. The main predators of Mu. gregaria in the SJG are two species of teleost fish (pink cusk eel, Genypterus blacodes, Argentine seabass, Acanthistius brasilianus) and three Rajidae skates (Zearaja chilensis, Psammobatis spp. and Sympterygia bonapartii), which exhibited decreased catches in the years analysed. The increased consumption of Mu. gregaria by Me. hubbsi, coupled with decreased trends in abundance of the main predators of the lobster krill during the last decade, indicate that top‐down trophic dynamic control occurs in the SJG ecosystem.  相似文献   
225.
The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961–1990 to represent baseline climate, and 2011–2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011–2040, 2041–2070 and 2071–2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4–6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation–Evaporation (P–E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and S?o Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.  相似文献   
226.
The mobility of subsurface arsenic is controlled by sorption, precipitation, and dissolution processes that are tied directly to coupled redox reactions with more abundant, but spatially and temporally variable, iron and sulfur species. Adjacent to the site of a former pesticide manufacturing facility near San Francisco Bay (California, USA), soil and groundwater arsenic concentrations are elevated in sediments near the prior source, but decrease to background levels downgradient where shallow groundwater mixes with infiltrating tidal waters at the plume periphery, which has not migrated appreciably in over two decades of monitoring. We used synchrotron X-ray absorption spectroscopy, together with supporting characterizations and sequential chemical extractions, to directly determine the oxidation state of arsenic and iron as a function of depth in sediments from cores recovered from the unsaturated and saturated zones of a shallow aquifer (to 3.5 m below the surface). Arsenic oxidation state and local bonding in sediments, as As-sulfide, As(III)-oxide, or As(V)-oxide, were related to lithologic redox horizons and depth to groundwater. Based on arsenic and iron speciation, three subsurface zones were identified: (i) a shallow reduced zone in which sulfide phases were found in either the arsenic spectra (realgar-like or orpiment-like local structure), the iron spectra (presence of pyrite), or both, with and without As(III) or As(V) coordinated by oxygen; (ii) a middle transitional zone with mixed arsenic oxidation states (As(III)–O and As(V)–O) but no evidence for sulfide phases in either the arsenic or iron spectra; and (iii) a lower oxidized zone in the saturated freshwater aquifer in which sediments contained only oxidized As(V) and Fe(III) in labile (non-detrital) phases. The zone of transition between the presence and absence of sulfide phases corresponded to the approximate seasonal fluctuation in water level associated with shallow groundwater in the sand-dominated, lower oxic zone. Total sediment arsenic concentrations showed a minimum in the transition zone and an increase in the oxic zone, particularly in core samples nearest the former source. Equilibrium and reaction progress modeling of aqueous-sediment reactions in response to decreasing oxidation potential were used to illustrate the dynamics of arsenic uptake and release in the shallow subsurface. Arsenic attenuation was controlled by two mechanisms, precipitation as sulfide phases under sulfate-reducing conditions in the unsaturated zone, and adsorption of oxidized arsenic to iron hydroxide phases under oxidizing conditions in saturated groundwaters. This study demonstrates that both realgar-type and orpiment-type phases can form in sulfate-reducing sediments at ambient temperatures, with realgar predicted as the thermodynamically stable phase in the presence of pyrite and As(III) under more reduced conditions than orpiment. Field and modeling results indicate that the potential for release of arsenite to solution is maximized in the transition between sulfate-reduced and iron-oxidized conditions when concentrations of labile iron are low relative to arsenic, pH-controlled arsenic sorption is the primary attenuation mechanism, and mixed Fe(II,III)-oxide phases do not form and generate new sorption sites.  相似文献   
227.
The Neuquén back-arc basin is located on the west margin of the South American platform between latitudes 36° and 40° S. The basin is famous for its continuous sedimentary record from the Late Triassic to Cenozoic comprising continental and marine clastic, carbonate, and evaporitic deposits up to 2.600 m in thickness.The stratigraphical and paleontological studies of the outcrops of the La Manga Formation, Argentina, located near the Bardas Blancas region, Mendoza province (35° S and 69° O) allow the reconstruction of the sedimentary environments of an Oxfordian carbonate ramp, where outer ramp, middle ramp, inner ramp (oolitic shoal), inner ramp margin (patch reef) lagoon and paleokarst were differentiated. The reefs consist of back reef facies and in situ framework of coral boundstones that was formed at the top of shallowing-upward succession.Coral reefs were analyzed by defining coral colonies shapes, paleontological content, coral diversity and taphonomy studies. In some studied sections abundant fragments of gryphaeids, encrusting bryozoans, and isolated sponges provided a suitable substrate for coral colonization; however, other sections show an increase in the proportions of ooids, peloidal and coral intraclasts.The core reef facies is composed of white-grey unstratified and low diversity scleractinian coral limestone dominated by robust and thinly branching corals with cerioid–phocoid growths and massive coral colonies with meandroid–thamnasteroid growth forms.The assemblage is characterized by Actinastraea sp., Australoseris sp., Thamnasteria sp. and Garateastrea sp. Internal facies organization and different types of coral colonies allow to recognize the development of varying framework as well as intercolony areas. A superstratal growth fabric characterizes the coral assemblage. On the basis of coral growth fabric (branche and domal types), the reef of La Manga Formation is considered a typical mixstones. The intercolony areas consist of biomicrites and biomicrorudites containing abundant coral fragments, parautochthonous gryphaeids and another bivalves (Ctenostreon sp.), gastropods (Harpagodes sp., Natica sp.), echinoderms test and spines (Plegiocidaris sp.), miliolids, Cayeuxia sp., Acicularia sp., Salpingoporella sp., intraclasts, ooids, peloids and coated grains.The domal growth forms are probably more protected against biological and physical destruction, meanwhile delicate branching growth forms with very open and fragile framework were more affected and fragmented due to wave action and bioerosion.The reef fabric shows different intervals of truncation as consequence of erosion resulting from coral destruction by storm waves or currents. The maximum flooding surface separates oolitic shoal facies below from the aggradational and progradational coralline limestones facies above. Subsequent sea-level fall and karstification (148 Ma) affected reef and oolitic facies.  相似文献   
228.
We relate a single-crystal FTIR (Fourier transform infrared) and neutron diffraction study of two natural cancrinites. The structural refinements show that the oxygen site of the H2O molecule lies off the triad axis. The water molecule is almost symmetric and slightly tilted from the (0001) plane. It is involved in bifurcated hydrogen bridges, with Ow···O donor–acceptor distances >2.7 Å. The FTIR spectra show two main absorptions. The first at 3,602 cm?1 is polarized for E ⊥ c and is assigned to the ν3 mode. The second, at 3,531 cm?1, is also polarized for ⊥ c and is assigned to ν1 mode. A weak component at 4,108 cm?1 could possibly indicate the presence of additional OH groups in the structure of cancrinite. Several overlapping bands in the 1,300–1,500 cm?1 range are strongly polarized for ⊥ c, and are assigned to the vibrations of the CO3 group.  相似文献   
229.
The heating of the ion-neutral (or ambipolar) diffusion may affect the thermal phases of the molecular clouds. We present an investigation on the effect of this heating mechanism in the thermal instability of the molecular clouds. A weakly ionized one-dimensional slab geometry, which is allowed for self-gravity and ambipolar diffusion, is chosen to study its thermal phases. We use the thermodynamic evolution of the slab to obtain the regions where slab cloud becomes thermally unstable. We investigate this evolution using the model of ambipolar diffusion with two-fluid smoothed particle hydrodynamics, as outlined by Hosking and Whitworth. Firstly, some parts of the technique are improved to test the pioneer works on behavior of the ambipolar diffusion in an isothermal self-gravitating slab. Afterwards, the improved two-fluid technique is used for thermal evolution of the slab. The results show that the thermal instability may persist inhomogeneities with a large density contrast at the intermediate parts of the cloud. We suggest that this feature may be responsible for the planet formation in the intermediate regions of a collapsing molecular cloud and/or may also be relevant to the formation of star forming dense cores in the clumps.  相似文献   
230.
Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号