首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8143篇
  免费   641篇
  国内免费   179篇
测绘学   341篇
大气科学   928篇
地球物理   2540篇
地质学   3008篇
海洋学   605篇
天文学   880篇
综合类   192篇
自然地理   469篇
  2023年   11篇
  2022年   17篇
  2021年   58篇
  2020年   51篇
  2019年   57篇
  2018年   515篇
  2017年   439篇
  2016年   368篇
  2015年   217篇
  2014年   204篇
  2013年   261篇
  2012年   761篇
  2011年   581篇
  2010年   257篇
  2009年   334篇
  2008年   297篇
  2007年   267篇
  2006年   259篇
  2005年   938篇
  2004年   976篇
  2003年   754篇
  2002年   282篇
  2001年   146篇
  2000年   129篇
  1999年   83篇
  1998年   89篇
  1997年   64篇
  1996年   54篇
  1995年   34篇
  1994年   24篇
  1993年   32篇
  1992年   23篇
  1991年   40篇
  1990年   22篇
  1989年   22篇
  1987年   19篇
  1986年   10篇
  1985年   20篇
  1984年   28篇
  1983年   20篇
  1982年   11篇
  1981年   8篇
  1980年   11篇
  1979年   8篇
  1978年   10篇
  1977年   11篇
  1976年   16篇
  1975年   18篇
  1973年   10篇
  1971年   7篇
排序方式: 共有8963条查询结果,搜索用时 15 毫秒
131.
132.
Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960–2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001–2010) and the predicting period (2011–2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.  相似文献   
133.
Karabash (52°2 N, 60°10 E) is a copper smelting town in the southern Ural Mountains of Russia. The town is affected by sulphur dioxide emissions and deposition of metal-rich particulates from the smelter, acid drainage from old mine workings, and leachates from disused waste dumps and tailings dams. The close proximity of houses to these sources of pollution is of concern to human health and has devastated terrestrial vegetation in the environs. The environmental impact of the smelter on lakes in the area has been assessed using chironomids. Short sediment cores were taken from 16 lakes within a 50 km radius of the smelter and the composition of the chironomid fauna from the bottom of each core, representing conditions prior to the commissioning of the smelter in 1910, was compared with the present chironomid fauna in the surface sediments. Redundancy analysis (RDA) showed that changes in the chironomid fauna of most lakes were driven by trophic change, independent of the industrial activity. Lakes and ponds adjacent to the smelter and waste dumps, which directly receive contaminated waters were devoid of macro- and mesofauna and flora, but there is no evidence that other lakes have been severely impacted by smelter emissions. Local geology ensures that the lakes are well-buffered to the effects of acid deposition which will limit the bioavailability of metals in the water column and sediment.  相似文献   
134.
Because of differential isostatic rebound, many lakes in Canada have continued to change their extent and depth since retreat of the Laurentide Ice Sheet. Using GIS techniques, the changing configuration and bathymetry of Lake of the Woods in Ontario, Manitoba, and Minnesota were reconstructed for 12 points in time, beginning at 11,000 cal yr B.P. (9.6 14C ka B.P.), and were also projected 500 years into the future, based on the assumption that Lake of the Woods continued to have a positive hydrological budget throughout the Holocene. This modeling was done by first compiling a bathymetric database and merging that with subaerial data from the Shuttle Radar Topography Mission (SRTM). This DEM file was then adjusted by: (1) isobase data derived from Lake Agassiz beaches prior to 9000 cal yr B.P. (8.1 14C ka B.P.) and (2) modeled isostatic rebound trend analysis after 9000 cal yr B.P. Just after the end of the Lake Agassiz phase of Lake of the Woods, only the northernmost part of the basin contained water. Differential rebound has resulted in increasing water depth. In the first 3000 years of independence from Lake Agassiz, the lake transgressed >50 km to the south, expanding its area from 858 to 2857 km2, and more than doubling in volume. Continued differential rebound after 6000 cal yr B.P. (5.2 14C ka B.P.) has further expanded the lake, although today it is deepening by only a few cm per century at the southern end. In addition, climate change in the Holocene probably played a role in lake level fluctuations. Based on our calculation of a modern hydrological budget for Lake of the Woods, reducing runoff and precipitation by 65% and increasing evaporation from the lake by 40% would end overflow and cause the level of the lake to fall below the outlets at Kenora. Because this climate change is comparable to that recorded during the mid-Holocene warming across the region, it is likely that the area covered by the lake at this time would have been less than that determined from differential isostatic rebound alone.  相似文献   
135.
136.
Sedimentary, palynologic and 14C analysis of marls and swamp‐peats, formed under fluctuating artesian spring conditions, provide climate and vegetation records from >52,000 to 0 yr BP at Mowbray, and 30,000 to 0 yr BP at Broadmeadows. Before about 65,000 yr BP conditions at Mowbray were relatively dry and the vegetation was Leptospermum shrubland. After 65,000 and before 55,000 yr BP moist conditions produced Cyperaceae swamps. Between 55,000 and 45,000 yr BP the climate was relatively dry, and between 45,000 and 35,000 yr BP relatively moist. Leptospermum shrubs were dominant in both periods. The climate was moist between 35,000 and 22,000 yr BP and sedge swamps formed. Between 22,000 and 11,000 yr BP the climate was relatively dry and grasses were important. Postglacial climate (11,000–0 yr BP) was warm and moist, and Melaleuca‐Leptospermum forest and shrubland flourished. The climatic changes suggested for north western Tasmania seem to compare broadly with changes suggested for Tasmanian and for other southern Australian sites, but the correlation is limited by imprecise dating.  相似文献   
137.
138.
139.
140.
The fair and effective governance of freshwater is an increasingly prominent issue in New Zealand. Emerging from a complex of cultural, economic and biophysical narratives, freshwater geographies are multiple, varied and increasingly acknowledged as worthy of interdisciplinary scrutiny. In this commentary, we reflect on a series of generative spaces that we – as group of postgraduate geographers (plus supporting staff) – created to engage with the multiplicity of freshwater meanings both within and beyond the academy. Through this evolving epistemic‐political project, we significantly reframed our own understandings about what freshwater ‘is’ and how it ought to be governed. By pursuing a deeper understanding of how the world gets made, we expand our ability to know and make it differently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号