首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   12篇
测绘学   4篇
大气科学   6篇
地球物理   21篇
地质学   76篇
海洋学   4篇
天文学   19篇
自然地理   7篇
  2024年   1篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   13篇
  2015年   10篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   15篇
  2010年   9篇
  2009年   11篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   6篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
121.
122.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   
123.
124.
The development of new sensors and easier access to remote sensing data are significantly transforming both the theory and practice of remote sensing. Although data-driven approaches based on innovative algorithms and enhanced computing capacities are gaining importance to process big Earth Observation data, the development of knowledge-driven approaches is still considered by the remote sensing community to be one of the most important directions of their research. In this context, the future of remote sensing science should be supported by knowledge representation techniques such as ontologies. However, ontology-based remote sensing applications still have difficulty capturing the attention of remote sensing experts. This is mainly because of the gap between remote sensing experts’ expectations of ontologies and their real possible contribution to remote sensing. This paper provides insights to help reduce this gap. To this end, the conceptual limitations of the knowledge-driven approaches currently used in remote sensing science are clarified first. Then, the different modes of definition of geographic concepts, their duality, vagueness and ambiguity, and the sensory and semantic gaps are discussed in order to explain why ontologies can help address these limitations. In particular, this paper focuses on the capacity of ontologies to represent both symbolic and numeric knowledge, to reason based on cognitive semantics and to share knowledge on the interpretation of remote sensing images. Finally, a few recommendations are provided for remote sensing experts to comprehend the advantages of ontologies in interpreting satellite images.  相似文献   
125.
The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005 to 2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contribute secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 mg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment–water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.  相似文献   
126.
The topographical complexity of coral reefs is of primary importance for a number of hydrodynamical and ecological processes. The present study is based on a series of high-resolution seabottom elevation measurements along the Maupiti Barrier Reef, French Polynesia. Several statistical metrics and spectral analysis are used to characterize the spatial evolution of the coral geometrical structure from the reef crest to the backreef. A consistent fractal-like power law exists in the spectral density of bottom elevation for length scales between 0.1 and 7 m, while at larger scale, the reef structure shows a different pattern. Such a fine characterization of the reef geometrical structure provides key elements to reconstruct the reef history, to improve the representation of reef roughness in hydrodynamical models and to monitor the evolution of coral reef systems in the context of global change. © 2020 John Wiley & Sons, Ltd.  相似文献   
127.
The Maevatanana deposits consist of gold-bearing quartz–sulphide veins crosscutting banded iron formation (BIF) within a metamorphosed 2.5 Ga greenstone belt. The host rocks are dominated by a sequence of migmatites, gneisses, amphibolites, magnetite-rich quartzites and soapstones, intruded by large granitoid batholiths (e.g. the 0.8 Ga Beanana granodiorite). In the mineralised rocks, pyrite is the dominant sulphide, in addition to accessory chalcopyrite and galena. Outside the immediate ore zone, the BIF is dominated by quartz + magnetite ± hematite, accompanied by cummingtonite, albite and biotite. Gold occurs as globular grains (usually <500 μm) within quartz crystals close to the sulphides and as invisible inclusions within pyrite and chalcopyrite (up to 2,500 ppm Au content). Fluid inclusion textural and microthermometric studies indicate heterogeneous trapping of a low-salinity (∼3.6 wt.% eq. NaCl) aqueous fluid coexisting with a carbonic fluid. Evidence for fluid-phase immiscibility during ore formation includes variable L/V ratios in the inclusions and the fact that inclusions containing different phase proportions occur in the same area, growth zone, or plane. Laser Raman spectroscopy confirms that the vapour phase in these inclusions is dominated by CO2 but shows that it may contain small amounts of CH4 (<1 mol%), H2S (<0.05 mol%) and traces of N2. Fluid inclusion trapping conditions ranged from 220 to 380°C and averaged 250°C. Pressure was on the order of 1–2 kbar. The abundant CO2 and low salinity of the inclusions suggest a metamorphic origin for the fluid. Likewise, the presence of H2S in the fluid and pyritisation of the wall-rock indicate that gold was likely transported by sulphide complexing. Fluid immiscibility was probably triggered by the pressure released by fracturing of the quartzites during fault movements due to competence differences with the softer greenstones. Fracturing greatly enhanced fluid circulation through the BIF, allowing reaction of the sulphide-bearing fluids with the iron oxides. This caused pyrite deposition and concomitant Au precipitation, enhanced by fluid phase separation as H2S partitioned preferentially into the carbonic phase.  相似文献   
128.
Inorganic magnetite nanocrystals were synthesized in an aqueous medium at 25°C, atmospheric pressure, ionic strength of 0.1 M, oxygen fugacity close to 0, and under controlled chemical affinity, which was maintained constant during an experiment and varied between different experiments. The total concentration of iron in the initial solutions, with Fe(III)/Fe(II) ratios of 2, was varied in order to measure the role of this parameter on the reaction rate, particle morphology, and oxygen isotopic composition. The reaction rates were followed by a pHstat apparatus. The nature and morphology of particles were studied by transmission electron microscopy and electron energy loss spectroscopy. Fractionation factors of oxygen isotopes were determined by mass spectrometry after oxygen extraction from the solid on BrF5 lines. At low total iron concentrations, goethite and poorly crystalline iron oxides were observed coexisting with magnetite. At higher concentrations, euhedral single crystals of pure magnetite with an average characteristic size of 10 nm were formed, based on a first-order rate law with respect to total iron concentration. These results confirm that, under high supersaturation conditions, low-temperature inorganic processes can lead to the formation of well-crystallized nanometric magnetite crystals with narrow size distribution. The observed oxygen isotope fractionation factor between magnetite crystals and water was of 0-1‰, similar to the fractionation factor associated with bacterially produced magnetite. We suggest that the solution chemistry used in this study for inorganic precipitation is relevant to better understanding of magnetite precipitation in bacterial magnetosomes, which might thus be characterized by high saturation states and pH.  相似文献   
129.
The Istituto di Geoscienze e Georisorse (IGG), on behalf and with the support of the International Atomic Energy Agency (IAEA), prepared eight geological materials (three natural waters and five rocks and minerals), intended for a blind interlaboratory comparison of measurements of boron isotopic composition and concentration. The materials were distributed to twenty seven laboratories - virtually all those performing geochemical boron isotope analyses in the world -which agreed to participate in the intercomparison exercise. Only fifteen laboratories, however, ultimately submitted the isotopic and/or concentration results they obtained on the intercomparison materials. The results demonstrate that interlaboratory reproducibility is not well reflected by the precision values reported by the individual laboratories and this observation holds true for both boron concentration and isotopic composition. The reasons for the discrepancies include fractionations due to the chemical matrix of materials, relative shift of the zero position on the δ11B scale and a lack of well characterized materials for calibrating absolute boron content measurements. The intercomparison materials are now available at the IAEA (solid materials) and IGG (waters) for future distribution.  相似文献   
130.
Using synthetic geometrical clouds and radiative microwave model, we examine the possibility to correct the estimations of liquid water path (LWP) or rain rate with cloud cover measurement. This information may be gotten by co-localized measurements of microwave and infrared/visible measurements on new satellites (TRMM, ADEOS 2, …). In a first step, the effects of fractional cloud cover on microwave brightness temperatures (TB) are investigated in three typical cases of nonprecipitating and precipitating (stratiform and convective) clouds. The beam-filling error (BFE) on brightness temperatures may be analyzed with the known spatial variability using 1D or 3D radiative transfer model. Relationships between BFE and subpixel cloud fraction (CF) are discussed according to the cloud type. We tested several parameters that characterize the horizontal cloud inhomogeneity within a radiometer field of view. BFE was found very sensitive to cloud type and inhomogeneity and is maximum for raining cloud with open spatial structure. In order to account for the uncertainty introduced by the spatial distribution, dependence of BFE on textural-based parameters is also discussed using homogeneity, entropy and an indicator of CF horizontal gradient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号