首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   12篇
  国内免费   6篇
测绘学   10篇
大气科学   63篇
地球物理   105篇
地质学   123篇
海洋学   54篇
天文学   32篇
综合类   1篇
自然地理   27篇
  2023年   5篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   9篇
  2017年   19篇
  2016年   24篇
  2015年   12篇
  2014年   26篇
  2013年   25篇
  2012年   19篇
  2011年   25篇
  2010年   21篇
  2009年   31篇
  2008年   33篇
  2007年   15篇
  2006年   18篇
  2005年   21篇
  2004年   18篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
411.
Landslide triggers along volcanic rock slopes in eastern Sicily (Italy)   总被引:3,自引:0,他引:3  
A new dataset of landslides, occurred in a tectonically active region, has been analysed in order to understand the causes of the slope instability. The landslides we have dealt with took place along the volcanic rock cliff of S. Caterina and S. Maria La Scala villages (eastern Sicily, Italy), a densely inhabited area located on the eastern margin of Mt. Etna, where some seismogenic faults, locally named Timpe system, slip during moderate local earthquakes and also move with aseismic creep mechanisms. The results show that landslides are triggered by heavy rainfalls, earthquakes and creep fault episodes. Indeed, they occur along discrete fault segments, exhibiting a combination of both brittle failure, indicated by the earthquake occurrence, and aseismic creep events. The analysis of seismicity occurred on the Timpe fault system has shown that the active Acireale fault, in its southernmost segment, is subject to an aseismic sliding, which increases after the stick–slip motion in the nearby faults. Therefore, aseismic creep seems to concur in the predisposition of a rock to fail, since strains can increase the jointing of rock masses leading to a modification in the slope stability. Understanding the factors concurring to the slope instability is a useful tool for future assessments of the landslide hazard in densely settled areas, located on a volcanic edifice, such as Etna that is slowly sliding seawards, and where active faults, seismicity and heavy rains affect the deeply fractured slopes.  相似文献   
412.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   
413.
The mechanism of pyrite oxidation in carbonate-containing alkaline solutions at 80 °C was investigated with the help of rate experiments, thermodynamic modeling and diffuse reflectance infrared spectroscopy (DRIFTS). Pyrite oxidation rate increased with pH and was enhanced by addition of bicarbonate/carbonate ions. The carbonate effect was found to be limited to moderately alkaline conditions (pH 8-11). Metastable Eh-pH diagrams, at 25 °C, indicate that soluble iron-carbonate complexes (FeHCO3, FeCO30, Fe(CO3)(OH) and FeCO32−) may coexist with pyrite in the pH range of 6-12.5. Above pH 11 and 13, the Fe(II) and Fe(III) hydroxocomplexes, respectively, become stable, even in the presence of carbonate/bicarbonate ions. Surface-bound carbonate complexes on iron were also identified with DRIFTS as products of pyrite oxidation in addition to iron oxyhydroxides and soluble sulfate species. The conditions under which thermodynamic and DRIFTS analyses indicate the presence of carbonate compounds also correspond to those in which the fastest rate of pyrite oxidation in carbonate solutions was observed. Following the Singer-Stumm model for pyrite oxidation in acidic solutions, it is assumed that Fe(III) is the preferred pyrite oxidant under alkaline conditions. We propose that carbonate ions facilitate the electron transfer from soluble iron(II)-carbonate to O2, increase the iron solubility, and provide buffered, favorable alkaline conditions at the reaction front, which in turn favors the overall kinetics of pyrite oxidation. Therefore, the electron transfer from sulfur atoms to O2 is facilitated by the formation of the cycle of Fe(II)-pyrite/Fe(III)-carbonate redox couple at the pyrite surface.  相似文献   
414.
415.
Shock-related calcite twins are characterized in calcite-bearing metagranite cataclasites within crystalline megablocks of the Ries impact structure, Germany, as well as in cores from the FBN1973 research drilling. The calcite likely originates from pre-impact veins within the Variscan metagranites and gneisses, while the cataclasis is due to the Miocene impact. Quartz in the metagranite components does not contain planar deformation features, indicating low shock pressures (<7 GPa). Calcite, however, shows a high density (>1/μm) of twins with widths <100 nm. Different types of twins (e-, f-, and r-twins) crosscutting each other can occur in one grain. Interaction of r- and f-twins results in a-type domains characterized by a misorientation relative to the host with a misorientation angle of 35°–40° and a misorientation axis parallel to an a-axis. Such a-type domains have not been recorded from deformed rocks in nature before. The high twin density and activation of different twin systems in one grain require high differential stresses (on the order of 1 GPa). Twinning of calcite at high differential stresses is consistent with deformation during impact cratering at relatively low shock pressure conditions. The twinned calcite microstructure can serve as a valuable low shock barometer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号