首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   137篇
  国内免费   172篇
测绘学   87篇
大气科学   64篇
地球物理   95篇
地质学   403篇
海洋学   80篇
天文学   12篇
综合类   56篇
自然地理   136篇
  2024年   6篇
  2023年   15篇
  2022年   44篇
  2021年   51篇
  2020年   45篇
  2019年   45篇
  2018年   43篇
  2017年   45篇
  2016年   29篇
  2015年   51篇
  2014年   45篇
  2013年   54篇
  2012年   51篇
  2011年   36篇
  2010年   41篇
  2009年   49篇
  2008年   46篇
  2007年   33篇
  2006年   37篇
  2005年   22篇
  2004年   16篇
  2003年   27篇
  2002年   29篇
  2001年   25篇
  2000年   13篇
  1999年   9篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1986年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有933条查询结果,搜索用时 125 毫秒
11.
城市群演化的空间过程及土地利用优化配置   总被引:23,自引:3,他引:23  
城市群演化包含了诸多内容 ,如人口、产业、城市类型、城市职能等 ,而空间过程是最直接、最综合的表现。  相似文献   
12.
董家山隧道小净距段爆破控制的数值模拟   总被引:11,自引:1,他引:11  
姚勇  何川  晏启祥  李玉文 《岩土力学》2004,25(Z2):501-506
结合都-汶高速公路董家山隧道小净距段的实际情况,应用数值模拟方法,对小净距段在爆破荷载作用下的相互影响问题进行了研究.结果表明在隧道爆破施工中应对迎爆侧进行重点监控,采用合理的开挖和加固方式将有效降低爆破施工对先建隧道的不利影响.研究结论可为类似小净距段隧道的爆破设计、施工及现场监控量测提供参考.  相似文献   
13.
金沙江流域(云南境内)山地灾害危险性评价   总被引:14,自引:1,他引:14  
唐川 《山地学报》2004,22(4):451-460
云南境内的金沙江流域是斜坡不稳定的敏感区,根据1988-2000年的区域调查和统计,区内发育山地灾害点1697处,其中流域面积大于1km2的泥石流沟808条,体积大于1×104m3的滑坡580处,体积大于1000m3的崩塌309处。用于山地灾害危险性评价的主要敏感因子包括岩土体类型、山坡坡度、降雨、土地利用、地震烈度和人类活动。在对这些因子进行了敏感性评价的基础上,应用GIS对敏感因子集成评价而产生了云南金沙江流域山地灾害危险性评价图。评价结果表明:高危险区面积占全区面积6464km2的8 77%,中危险区占全区总面积的41 51%,低危险区占41 12%,无危险区占8 60%。山地灾害危险性评价图可以帮助规划者或工程师在土地发展规划中选择最佳建设场所,以减轻灾害的影响。  相似文献   
14.
昆明市东川区泥石流信息系统的建立及其应用   总被引:4,自引:2,他引:4  
根据东川区泥石流的成因、泥石流灾害信息源、各类数据的表达方式及泥石流信息系统的应用等,对东川区泥石流信息系统进行了系统分析,在此基础上利用3S技术,在ARCVIEW的AVENUE开发语言支持下,集成各类数据,建立东川区泥石流信息系统,最后讨论了该系统在泥石流危险度区划及灾害趋势分析中的应用。  相似文献   
15.
以色列解决水资源问题的经验对新时期中国经济社会可持续发展有着现实的借鉴意义。本文分析了以色列的水资源问题及解决措施,结合我国西北地区的实际情况提出了对西北水资源开发的建议和设想。  相似文献   
16.
Research on Formation Mechanisms of Hot Dry Rock Resources in China   总被引:3,自引:0,他引:3  
As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high–temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high–temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner–plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large–scale development and the utilisation of HDR resources can be achieved in China.  相似文献   
17.
广西马刚金矿床位于那坡褶皱带坡笨背斜的南东倾伏端。矿体受断裂构造的控制,产出与断裂构造、特定岩性、不整合界面有关,主要以含金破碎带型金矿体形式产出,赋存于矿区内NW向的断裂构造带中,少数产于辉绿岩与围岩的接触带内。结合矿床的地质特征及成因,总结了矿区内矿体的成矿规律,且指出了今后的找矿方向。  相似文献   
18.
Incubation experiments were adopted to characterize the rates and pathways of iron reduction and the contributions to anaerobic organic matter mineralization in the upper 0–5 cm of sediments along a landscape-scale inundation gradient in tidal marsh sediments in the Min River Estuary, Southeast China. Similar sediment characteristics, single-species vegetation, varied biomass and bioturbation, distinct porewater pH, redox potential, and electrical conductivity values have resulted in a unique ecogeochemical zonation along the inundation gradient. Decreases in solid-phase Fe(III) and increases in nonsulfidic Fe(II) and iron sulfide were observed in a seaward direction. Porewater Fe2+ was only detected in the upland area. High rates of iron reduction were observed in incubation jars, with significant accumulations of nonsulfidic Fe(II), moderate accumulations of iron sulfides, and negligible accumulations of porewater Fe2+. Most of the iron reduction was microbially mediated rather than coupled to reduced sulfides. Microbial iron reduction accounted for 20–89 % of the anaerobic organic matter mineralization along the inundation gradient. The rate and dominance of microbial iron reduction generally decreased in a seaward direction. The contributions of microbial iron reduction to anaerobic organic matter mineralization depended on the concentrations of bioavailable Fe(III), the spatial distribution of which was significantly related to tidal inundation. Our results clearly showed that microbial iron reduction in the upper sediments along the gradient is highly dependent on spatial scales controlled primarily by tidal inundation.  相似文献   
19.
Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally,two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling(superplume) systems. Based on this global mantle structure,we examine the distribution of extensional stress applied to the supercontinent by both subsupercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that:(1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat;(2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup;(3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force.  相似文献   
20.
As the northern segment of the Jiao-Liao-Ji Belt (JLJB), the Palaeoproterozoic Liaoji Belt is a key region for deciphering the formation and evolution of the North China Craton (NCC). In this study, we present the geochronology, geochemical, and isotopic studies on the monzogranitic gneiss, which is one of the major lithotectonic elements of the Liaoji Belt. LA-ICP-MS zircon U–Pb dating reveals that the studied monzogranitic gneisses were formed in the period of 2213–2178 Ma. They are in tectonic contact with the Palaeoproterozoic volcano-sedimentary rocks in the field. The monzogranitic gneisses belong to the high-K calc-alkaline series, and are metaluminous to peraluminous. They have 10,000 Ga/Al ratios of 2.63–3.14 with an average of 2.90, and are thus classified as aluminous A-type granites. Their εNd(t) values vary from ?3.4 to +2.5, indicating heterogeneous source region. The monzogranitic gneisses are characterized by enrichment in LREE and LILE (e.g. Rb, Ba, Th, and K) and depletion in HREE and HFSE (such as Nb, Ta, and Ti), and are typical to magmatism in active continental margins formed in a subduction-related tectonic setting. Taking into account their A-type affinity and regional geological data, we suggest that the monzogranitic gneisses were most probably generated in a local extensional back-arc environment during subduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号