The activity concentration and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were determined in soil samples collected from ten different locations of Sirsa district of Haryana, using HPGe detector
based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil samples from the studied areas varies from 19.18 Bq kg−1 (Moriwala) to 40.31 Bq kg−1 (Rori), 59.43 Bq kg−1 (Pipli) to 89.54 Bq kg−1 (Fatehpur) and 223.22 Bq kg−1 (Moriwala) to 313.32 Bq kg−1 (SamatKhera) with overall mean values of 27.94, 72.75 and 286.73 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.84 and 18.58, 37.02 and 55.78, and 9.24 and 12.97 nGy h−1, respectively. The total absorbed dose in the study area ranges from 60.40 to 82.15 nGy h−1 with an average value of 70.12 nGy h−1. The calculated values of external hazard index (Hex) for the soil samples of the study area range from 0.36 to 0.49 with an average value of 0.42. 相似文献
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.
Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite. 相似文献
Previous work in the Gulf of Lions (western Mediterranean Sea) has suggested that significant amounts of sediment escape through the western part of this tectonically passive margin, despite it being far removed from the primary sediment source (the Rhone River, ∼160 km to the NE). The primary mechanism behind this export is hypothesized to be the interaction of a regional, southwestward sediment-transport path with a canyon deeply incising the southwestern part of the shelf, Cap de Creus Canyon. 相似文献
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions. 相似文献
In recent years, a number of data identification technologies have been developed which purport to permanently identify digital
objects. In this paper, nine technologies and systems for assigning persistent identifiers are assessed for their applicability
to Earth science data (ARKs, DOIs, XRIs, Handles, LSIDs, OIDs, PURLs, URIs/URNs/URLs, and UUIDs). The evaluation used four
use cases that focused on the suitability of each scheme to provide Unique Identifiers for Earth science data objects, to
provide Unique Locators for the objects, to serve as Citable Locators, and to uniquely identify the scientific contents of
data objects if the data were reformatted. Of all the identifier schemes assessed, the one that most closely meets all of
the requirements for an Unique Identifier is the UUID scheme. Any of the URL/URI/IRI-based identifier schemes assessed could
be used for Unique Locators. Since there are currently no strong market leaders to help make the choice among them, the decision
must be based on secondary criteria. While most publications now allow the use of URLs in citations, so that all of the URL/URI/IRI
based identification schemes discussed in this paper could potentially be used as a Citable Locator, DOIs are the identification
scheme currently adopted by most commercial publishers. None of the identifier schemes assessed here even minimally address
identification of scientifically identical numerical data sets under reformatting. 相似文献
This paper presents the findings of a collaborative research project of the Geological Survey of Lower Saxony (NLfB) and the Programme Group Systems Analysis and Technology Evaluation (STE) of Research Centre Jülich on the GIS-based determination of the mean long-term groundwater recharge in Lower Saxony using high-resolution digital data (Dörhöfer and others 2001). The model calculations were performed on the basis of the water-balance model GROWA (Kunkel and Wendland 2002) with a spatial resolution of 100x100 m2. The accuracy of the calculated groundwater recharge values for the period 1961–1990 was verified on the basis of data from gauging stations and displayed a good agreement between observed runoff values and model results. 相似文献
The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismic monitoring. 相似文献