首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3263篇
  免费   93篇
  国内免费   92篇
测绘学   70篇
大气科学   402篇
地球物理   812篇
地质学   1006篇
海洋学   648篇
天文学   302篇
综合类   46篇
自然地理   162篇
  2023年   12篇
  2022年   22篇
  2021年   48篇
  2020年   47篇
  2019年   63篇
  2018年   134篇
  2017年   124篇
  2016年   139篇
  2015年   87篇
  2014年   171篇
  2013年   220篇
  2012年   140篇
  2011年   203篇
  2010年   190篇
  2009年   190篇
  2008年   164篇
  2007年   176篇
  2006年   146篇
  2005年   122篇
  2004年   105篇
  2003年   96篇
  2002年   98篇
  2001年   76篇
  2000年   79篇
  1999年   55篇
  1998年   45篇
  1997年   41篇
  1996年   25篇
  1995年   37篇
  1994年   19篇
  1993年   17篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   25篇
  1979年   12篇
  1978年   7篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3448条查询结果,搜索用时 15 毫秒
151.
Distribution of seasonal rainfall in the East Asian monsoon region   总被引:8,自引:1,他引:8  
Summary ?This study deals with the climatological aspect of seasonal rainfall distribution in the East Asian monsoon region, which includes China, Korea and Japan. Rainfall patterns in these three countries have been investigated, but little attention has been paid to the linkages between them. This paper has contributed to the understanding of the inter-linkage of various sub-regions. Three datasets are used. One consists of several hundred gauges from China and South Korea. The second is based on the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). The two sources of precipitation information are found to be consistent. The third dataset is the NCEP/NCAR reanalysis 850-hPa winds. The CMAP precipitation shows that the seasonal transition over East Asia from the boreal winter to the boreal summer monsoon component occurs abruptly in mid-May. From late March to early May, the spring rainy season usually appears over South China and the East China Sea, but it is not so pronounced in Japan. The summer monsoon rainy season over East Asia commonly begins from mid-May to late May along longitudes of eastern China, the Korean Peninsula, and Japan. A strong quasi-20-day sub-seasonal oscillation in the precipitation appears to be dominant during this rainy season. The end date of the summer monsoon rainy season in eastern China and Japan occurs in late July, while the end date in the Korean Peninsula is around early August. The autumn rainy season in the Korean Peninsula has a major range from mid-August to mid-September. In southern China, the autumn rainy season prevails from late August to mid-October but a short autumn rainy season from late August to early September is noted in the lower part of the Yangtze River. In Japan, the autumn rainy season is relatively longer from mid-September to late October. The sub-seasonal rainfall oscillation in Korea, eastern China and Japan are explained by, and comparable to, the 850-hPa circulation. The strong westerly frontal zone can control the location of the Meiyu, the Changma, and the Baiu in East Asia. The reason that the seasonal sea surface temperature change in the northwestern Pacific plays a critical role in the northward advance of the onset of the summer monsoon rainfall over East Asia is also discussed. Received October 5, 2001; revised April 23, 2002; accepted May 11, 2002  相似文献   
152.
Crop models are useful tools for assessing the impact of climate change on crop production. The dynamic crop-growth model, CERES-Wheat is used to examine crop management responses, including yield, under six climate change scenarios for the years 2025 and 2050 on the Estate of Imperial College at Wye, Kent, U.K. Sensitivity analysis shows a dry matter yield decrease in response to increases in temperature alone. CERES-Wheat was then constrained to assess the crop performance under water-limited production scenarios with different soils, and the results show that crop grain yield actually increases, largely due to CO2 fertilisation leading to increased rates of photosynthesis. Different management practices (planting dates and nitrogen application) were applied to find the best adaptation strategies. In general, `early' sowing (10th September) had the highest simulated yield, and `late' sowing (10th November) the lowest. For the soils tested, the highest and sustained crop production was obtained from Hamble soils (silt loam) compared with either the Fyfield (sandy) or Denchworth (clay). Adding nitrogen and other fertilisers would likely be necessary to take full advantage of the CO2 fertilisationeffect and to compensate, in some cases, for yield losses caused by climate change where water shortage becomes serious.  相似文献   
153.
In order to understand sequence development and sea-level fluctuations during the late Middle Cambrian to early Furongian on the North China epeiric platform, the present study focuses on a unique, subtle erosion surface of an extensive (approx. 100 km), strongly deformed limestone bed in the uppermost part of the Gushan Formation, Shandong Province, China. The Gushan Formation and the overlying Chaomidian Formation consist mainly of shales and a variety of carbonates that were deposited in subtidal environments (e.g., deep subtidal, shallow subtidal, shoreface/shoal, subtidal microbial flat, and restricted platform interior). Three third-order depositional sequences (S1–3) are identified, each of which comprises a thin transgressive systems tract (TST) and a relatively thick highstand systems tract (HST). Each sequence is bounded by a drowning unconformity (SB1), a subaerial unconformity (SB2), or a surface of submarine erosion (SB3). The upper sequence boundary (SB2) of sequence 1 (S1) is represented by a subtle erosion surface of an extensive, deformed limestone bed with a wide variety of soft-sediment deformation structures (e.g., lime mudstone breccias, chaotic wacke-packstone laminae and fragments, homogenized oolites, and clastic dykes), and is overlain by small sporadic microbial buildups and an extensive bioclastic grainstone bed. The deformed limestone was formed during early diagenesis by differential deformation processes (brecciation, liquefaction/fluidization, and injection) which were most likely induced by pore-water overpressure during the period of rapid sea-level fall. Despite the lack of subaerial exposure features (e.g., paleokarst, paleosol, etc.), the characteristics of the erosion surface (cutting well-lithified sediment below), the missing of a significant geological record (the Prochuangia biozone), and the worldwide correlatable positive carbon isotope excursion collectively indicate that the erosion surface developed under conditions of subaerial exposure after contemporaneous marine cementation of the deformed sediment. The missing of the Prochuangia biozone is most likely due to non-deposition at a subaerial hiatal surface. The erosion surface was submerged as a result of subsequent rise in sea level, where sporadic microbial buildups formed under suitable conditions. Freshly deposited, winnowed, shell-dominated transgressive lag deposits (containing Chuangia trilobite fragments, brachiopod shells, and abundant glauconite grains) formed with continued rise in sea level, which became, in turn, overlain by shale-dominated facies. The unique combination of the subtle erosion surface (sensu stricto a subaerial unconformity) and the underlying deformed limestone bed provides an important criterion for recognizing the subtle changes in relative sea level on shallow epeiric platforms.  相似文献   
154.
Geochemical processes were identified as controlling factors of groundwater chemistry, including chemical weathering, salinization from seawater and dry sea-salt deposition, nitrate contamination, and rainfall recharge. These geochemical processes were identified using principal component analysis of major element chemistry of groundwater from basaltic aquifers in Jeju Island, South Korea, a volcanic island with intense agricultural activities. The contribution of the geochemical processes to groundwater chemistry was quantified by a simple mass-balance approach. The geochemical effects due to seawater were considered based on Cl contributions, whereas the effects due to natural chemical weathering were based on alkalinity. Nitrogenous fertilizers, and especially the associated nitrification processes, appear to significantly affect groundwater chemistry. A strong correlation was observed between Na, Mg, Ca, SO4 and Cl, and nitrate concentrations in groundwater. Correspondingly, the total major cations, Cl, and SO4 in groundwater were assessed to estimate relative effect of N-fertilizer use on groundwater chemistry. Cl originates more from nitrate sources than from seawater, whereas SO4 originates mostly from rainwater. N-fertilizer use has shown the greatest effect on groundwater chemistry, particularly when nitrate concentrations exceed 6–7 mg/L NO3–N. Nitrate contamination significantly affects groundwater quality and 18% of groundwater samples have contamination-dominated chemistry.  相似文献   
155.
Laboratory batch tests were conducted to investigate the sorption isotherms and sorption kinetics of the chlorinated hydrocarbon perchloroethylene (PCE) in five natural sandy materials with an organic carbon content (f oc) in the range 0.080–0.540%. The amended non-linear dual-mode model can describe the sorption isotherms in materials with f oc in the range 0.080–0.090%. For a sample with a much higher f oc of 0.54%, the absorption isotherm was found to fit a linear model. These results may indicate that organic carbon is not the main factor influencing the sorption isotherm. The sorption kinetics of PCE in samples with f oc in the range 0.080–0.090% are not first-order and are different from those observed in the samples with higher f oc. The sorption process in the materials with lower f oc involves fast sorption, fast desorption and an equilibrium stage. The results may imply that the factors affecting sorption kinetics of PCE in low f oc media are pore filling and capillary condensation rather than organic carbon content.  相似文献   
156.
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.  相似文献   
157.
In order to understand the change in oceanic variability associated with the climate shift of the mid-1970s, we analyze the contribution of momentum forcing to the leading baroclinic modes over the tropical Pacific using Simple Ocean Data Assimilation (SODA, version 2.0.2) for the period of 1958–1997. Specifically, we look at the statistical relationship between the wind projection coefficients and climate indices and attempt to provide a physical explanation for the observed changes. It is found that the wind stress projection coefficients according to the oceanic baroclinic modes are different in terms of their magnitude and phase in the tropical Pacific, reflecting a specific forcing associated with each mode before and after the 1976 climate shift. Compared to that before the 1970s, the first baroclinic mode is had a greater effect on the interannual sea surface temperature due to equatorial wave dynamics, and there was an increased delayed response of the second baroclinic mode variability to the interannual atmospheric forcing after the late 1970s. This reflects changes in ENSO feedback processes associated with the climate shift. Our analysis further indicates that, after the late 1970s, there was a decrease in the wind stress forcing projecting onto the Ekman layer, which is associated with increased mixed-layer depth. This result suggests that the changes in the ENSO properties before and after the late 1970s are largely associated with the changes in the way in which the wind stress forcing is dynamically projected onto the surface layer of the tropical Pacific Ocean over interannual timescales.  相似文献   
158.
The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90?C110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.  相似文献   
159.
Various types of satellite (AIRS/AMSU, MODIS) and ground measurements are used to analyze temperature trends in the four vertical layers (skin/surface, mid-troposphere, and low stratosphere) around the Korean Peninsula (123–132°E, 33–44°N) during the period from September 2002 to August 2010. The ground-based observations include 72 Surface Meteorological Stations (SMSs), 6 radiosonde stations (RAOBs), 457 Automatic Weather Stations (AWSs) over the land, and 5 buoy stations over the ocean. A strong warming (0.052 K yr?1) at the surface, and a weak warming (0.004~0.010 K yr?1) in the mid-troposphere and low stratosphere have been found from satellite data, leading to an unstable atmospheric layer. The AIRS/AMSU warming trend over the ocean surface around the Korean Peninsula is about 2.5 times greater than that over the land surface. The ground measurements from both SMS and AWS over the land surface of South Korea also show a warming of 0.043~0.082 K yr?1, consistent with the satellite observations. The correlation average (r = 0.80) between MODIS skin temperature and ground measurement is significant. The correlations between AMSU and RAOB are very high (0.91~0.95) in the anomaly time series, calculated from the spatial averages of monthly mean temperature values. However, the warming found in the AMSU data is stronger than that from the RAOB at the surface. The opposite feature is present above the mid-troposphere, indicating that there is a systematic difference. Warming phenomena (0.012~0.078 K yr?1) are observed from all three data sets (SMS, AWS, MODIS), which have been corroborated by the coincident measurements at five ground stations. However, it should also be noted that the observed trends are subject to large uncertainty as the corresponding 95% confidence intervals tend to be larger than the observed signals due to large thermal variability and the relatively short periods of the satellitebased temperature records. The EOF analysis of monthly mean temperature anomalies indicates that the tropospheric temperature variability near Korea is primarily linked to the Arctic Oscillation (AO), and secondarily to ENSO (El Niño and Southern Oscillation). However, the low stratospheric temperature variability is mainly associated with Southern Oscillation and then additionally with Quasi-Biennial Oscillation (QBO). Uncertainties from the different spatial resolutions between satellite data are discussed in the trends.  相似文献   
160.
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号