首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1918篇
  免费   60篇
  国内免费   18篇
测绘学   47篇
大气科学   126篇
地球物理   544篇
地质学   614篇
海洋学   210篇
天文学   307篇
综合类   7篇
自然地理   141篇
  2021年   22篇
  2020年   26篇
  2019年   27篇
  2018年   45篇
  2017年   33篇
  2016年   59篇
  2015年   43篇
  2014年   53篇
  2013年   86篇
  2012年   50篇
  2011年   67篇
  2010年   82篇
  2009年   84篇
  2008年   73篇
  2007年   94篇
  2006年   68篇
  2005年   63篇
  2004年   65篇
  2003年   60篇
  2002年   50篇
  2001年   30篇
  2000年   39篇
  1999年   30篇
  1998年   32篇
  1997年   29篇
  1996年   30篇
  1995年   34篇
  1994年   33篇
  1993年   14篇
  1992年   32篇
  1991年   32篇
  1990年   42篇
  1989年   26篇
  1988年   26篇
  1987年   18篇
  1986年   19篇
  1985年   32篇
  1984年   40篇
  1983年   28篇
  1982年   22篇
  1981年   32篇
  1980年   24篇
  1979年   22篇
  1978年   22篇
  1977年   16篇
  1976年   12篇
  1975年   13篇
  1974年   15篇
  1973年   16篇
  1972年   12篇
排序方式: 共有1996条查询结果,搜索用时 0 毫秒
61.
Granitoids play an important role in deciphering both crustal growth and tectonic evolution of Earth. In the eastern end of the Yinshan–Yanshan belt of North China Craton, the Yiwulüshan massif is a typical region that presents the tectonic evolution features of this belt. Our field work on the host rocks has demonstrated two phases of opposite tectonics: compressional and extensional, however, the deformation is almost invisible in the intrusive rocks. To improve the understanding of the tectonic evolution of the Yiwulüshan massif and the Late Mesozoic tectonics of East Asia, a multidisciplinary study has been carried out. In this study, anisotropy of magnetic susceptibility (AMS) and gravity modeling have been applied on these Jurassic plutons (Lüshan, Jishilazi and Guanyindong), which intrude into the Yiwulüshan massif. According to laboratory measurements and microscopic observations on thin sections, the AMS of the Yiwulüshan massif is characterized by secondary fabrics, indicating that the intensive post solidus deformation has reset the (primary) magmatic magnetic fabrics. A relatively gentle NW dipping magnetic foliation has been identified with two distinct groups of magnetic lineations of N34°E and N335°E orientations, namely LM1 and LM2, relatively. Gravity modeling reveals a southward thinning of the massif with a possible feeding zone rooted in the northern part of the massif. Integrating all results from structural observation, geochronological investigation, AMS measurement and gravity modeling, two tectonic phases have been identified in the Yiwulüshan massif, posterior to the Jurassic (180–160 Ma) magmatism in the Yinshan–Yanshan area. The early one concerns a Late Jurassic–Early Cretaceous (~ 141 Ma) compressional event with a top-to-the-south to southwest sense of shear. The second one shows an Early Cretaceous (~ 126 Ma) NW–SE ductile extensional shearing. At that time, sedimentary basins widened and Jurassic plutons started to be deformed under post solidus conditions. In fact, the NW–SE trend of the maximum stretching direction is a general feature of East Asian continent during Late Mesozoic.  相似文献   
62.
The volcanic ash or ‘tephra’ cloud resulting from the relatively small (volume and VEI) eruption of the Icelandic volcano Eyjafjallajökull in 2010 caused major air travel disruption, at substantial global economic cost. On several occasions in the past few centuries, Icelandic eruptions have created ash and/or sulphur dioxide clouds which were detected over Europe (e.g. Hekla in 1947, Askja in 1875, and Laki in 1783). However, these historical observations do not represent a complete record of events serious enough to disrupt aviation in Europe. The only feasible evidence for this is within the geological tephra record. Ash layers are preserved in bogs and lakes where tephra deposited from the atmosphere is incorporated in the peat/mud. In this article we: 1, introduce the analysis of the Northern European sedimentary tephra record; 2, discuss our findings and modelling results; 3, highlight how these were misinterpreted by the popular media; and 4, use this experience to outline several existing problems with current tephra studies and suggest agendas for future research.  相似文献   
63.
Throughout the aerial radiometric reconnaissance survey portion of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program, the identification of outliers (anomalies) was an important approach to locating regions with radio-element concentrations that are either higher or lower than expected. The method introduced herein to locate such regions involves three steps: selection of a high (or low) threshold for the variate of interest; use of the sample percentile to identify all points of interest; and movement of a window over the selected data to locate significant clusters of observations. These steps, applied to aerial radiometric 214Bi (equivalent uranium) data collected over the Copper Mountain area in Wyoming, resulted in the identification of areas enriched in that variate.  相似文献   
64.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   
65.
A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt   总被引:3,自引:0,他引:3  
Detailed structural geological and related studies were carried out in a number of critical areas in the Proterozoic basement of eastern Egypt to resolve the structural pattern at a regional scale and to assess the general characteristics of tectonic evolution, orogeny and terrane boundaries. Following a brief account of the tectonostratigraphy and timing of the orogenic evolution, the major structural characteristics of the critical areas are presented. Collisional deformation of the terranes ended about 615-600 Ma ago. Subsequent extensional collapse probably occurred within a relatively narrow time span of about 20 Ma (575 – 595 Ma ago) over the Eastern Desert and was followed by a further period of about 50 Ma of late to post-tectonic activity. The regional structures originated mainly during post-collisional events, starting with those related to extensional collapse (molasse basin formation, normal faulting, generation of metamorphic core complexes). Subsequent NNW-SSE shortening is documented by large-scale thrusting (towards the NNW) and folding, distributed over the Eastern Desert, although with variable intensity. Thrusts are overprinted by transpression, which was localized to particular shear zones. Early transpression produced, for example, the Allaqi shear zone and final transpression is documented in the Najd and Wadi Kharit-Wadi Hodein zones. Two terrane boundaries can be defined, the Allaqi and South Hafafit Sutures, which are apparently linked by the high angle sinistral strike-slip Wadi Kharit-Wadi Hodein shear zone with a tectonic transport of about 300 km towards the W/NW. In general, the tectonic evolution shows that extensional collapse is not necessarily the final stage of orogeny, but may be followed by further compressional and transpressional tectonism. The late Pan-African high angle faults were reactivated during Red Sea tectonics both as Riedel shears and normal faults, where they were oriented favourably with respect to the actual stress regime.  相似文献   
66.
67.
68.
69.
70.
Sustainable strategies such as green roofs have been implemented as stormwater management tools to mitigate disturbance of the hydrologic cycle resulting from urbanization. Green roofs, also referred to as vegetated roofs, can improve the urban landscape by reducing heat island effects, providing ecosystem services, and facilitating the retention and treatment of stormwater. Green roofs have received particular attention because they do not require acquisition and development of land and represent an application of biomimicry in design and construction. In this paper, we evaluate the effects of precipitation, evapotranspiration (ET), antecedent dry period (ADP), and seasonal variation on the run‐off quantity and distribution of an extensive, sedum covered, green roof on a commercial building in Syracuse, NY, USA. The green roof greatly facilitated retention of precipitation events without significant changes over the 4‐year study. The green roof retained on average 95.9 ± 3.6% (6.5 ± 5.6 mm) per rainfall event, with a range from 75% to 99.6% (33.2 to 3.3 mm). However, as precipitation quantity increased, the retention of water decreased. This high water retention capacity was the result of the combined effects of ET, stormwater storage (plants, growth media, and stormwater retention layer), and limited surface run‐off from the roof deck due to variation in the sloping of the green roof and the tapered insulation to the deck drains. The water retention capacity of the green roof did not change significantly between growing and nongrowing seasons. Slightly greater precipitation during the growing season coincided with increased ET. Average potential ET during the growing season was approximately 3 times greater than during the nongrowing season. The hydrologic performance of the green roof was not significantly impacted by an ADP greater than 2 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号