首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   13篇
  国内免费   9篇
测绘学   38篇
大气科学   88篇
地球物理   146篇
地质学   225篇
海洋学   39篇
天文学   141篇
综合类   1篇
自然地理   20篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   15篇
  2017年   14篇
  2016年   20篇
  2015年   12篇
  2014年   20篇
  2013年   35篇
  2012年   33篇
  2011年   26篇
  2010年   24篇
  2009年   39篇
  2008年   31篇
  2007年   30篇
  2006年   23篇
  2005年   14篇
  2004年   8篇
  2003年   27篇
  2002年   28篇
  2001年   11篇
  2000年   14篇
  1999年   12篇
  1998年   10篇
  1997年   13篇
  1996年   19篇
  1995年   7篇
  1994年   10篇
  1993年   14篇
  1992年   16篇
  1991年   9篇
  1990年   5篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   9篇
  1984年   4篇
  1983年   12篇
  1982年   7篇
  1981年   9篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1973年   6篇
  1972年   3篇
  1968年   2篇
  1966年   2篇
  1962年   2篇
排序方式: 共有698条查询结果,搜索用时 1 毫秒
211.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   
212.
213.
This paper aims to simulate the kinematic evolution of a regional transect crossing the Northern Emirates in the northernmost part of the Semail Ophiolite and the Dibba zone, just south of the Musandam Platform exposures. The studied section comprises, from top to bottom and from inner to outer zones, (1) the erosional remnants of the Semail Ophiolite, mainly made up of serpentinized ultramafics in the west and gabbros in the east, (2) high-grade metamorphic rocks which are currently exposed in the core of a nappe anticline near Masafi, (3) far-travelled Hawasina basinal units and Sumeini paleo-slope units of the Dibba Zone, (4) parautochthonous platform carbonates, which are currently well exposed in the Musandam area, and (5) a flexural basin filled with uppermost Cretaceous to Neogene sediments. Two main compressional episodes are generally identified, resulting first in the obduction of the Semail Ophiolite and then in the stacking of underlying platform carbonate units of the former Arabian passive margin, thus accounting for the present architecture of this transect: (1) first, deformation at the plate boundary initiated in the Late Cretaceous, resulting in the obduction of the Semail Ophiolite and the progressive accretion of the Hawasina and Sumeini tectonic wedge on top of the Arabian foreland, leading to a progressive bending of its lithosphere and development of a wide flexural basin; (2) compression resumed during the Neogene, leading to the tectonic stacking of the parautochthonous platform duplexes of Musandam and Margham trends, the development of out-of-sequence thrusts and triangle zones, refolding of the sole thrust of the former Late Cretaceous accretionary wedge and coeval normal (?) high-angle faulting along the contact between the Musandam and Dibba zones. However, seismic profiles and paleo-thermometers also help in identifying another erosional event at the boundary between the Paleogene Pabdeh and the Neogene Fars series. Evidenced by the local erosional truncation of the Pabdeh series in the vicinity of the frontal triangle zone (i.e. the inner part of the former Late Cretaceous foredeep), this Paleogene uplift/unroofing episode is tentatively interpreted here as an evidence for a continuum of compressional deformation lasting from the Late Cretaceous to the Middle Miocene although one may alternatively speculate that it was related to the detachment of the subducted slab. Although carbonate facies are usually not suitable for apatite fission track (AFT) studies, we were able to extract detrital apatites from quartz-bearing Triassic dolomites in the Musandam area. However, the yield and the quality were both poor and too few fission track lengths could be measured, making it difficult to interpret the meaning of the FT ages. The FT dates obtained in this study are therefore compared with those existing in the literature. Fortunately enough, for each sample, at least ten apatite crystals could be used for fission track dating, except for site 6 with only five datable apatite grains. The obtained apatite fission track dates between 28 and 13 Ma, much younger than the Triassic age of the series, are taken to represent reset fission track ages, implying erosion of an up-to-3-km-thick pile of Jurassic–Cretaceous carbonates and Hawasina allochthon during the Neogene. Apatite fission track dates from the ~95 M-old plagiogranites of the Semail complex (Searle and Cox, Geol Mag 139(3):241–255, 2002) obtained in this study and compared with those recently published provide evidences for more than one cooling event. An early unroofing of the ophiolite during the Late Cretaceous is revealed in fission track dates of 72–76 Ma at the top of the ophiolite in the east, which are coeval and also consistent with the occurrence of paleo-soils, rudists and paleo-reefs on top of serpentinized ultramafics in the west. High-pressure rocks at As Sifah in the southeast near Muscat revealed apatite fission track data ranging from ~46 to 63 Ma (Gray et al. 2006). The leucocratic part of the ophiolite (sample UAE 180) yielded comparable young apatite (40.6?±?3.9 Ma) and zircon (46.6?±?4.3 Ma) FT dates. A Cenozoic (~20–21 Ma) exhumation has been determined for the Bani Hamid metamorphic sole in northern Oman, applying low temperature geochronology and combining apatite FT and apatite (U–Th)/He analyses (Gray et al. 2006). In this study, young apatite fission track dates of 20 Ma have also been found but at the base of the ophiolite near Masafi, in the core of the nappe anticline, thus indicating a Neogene age for the refolding of the allochthon and stacking of underlying parautochthonous platform carbonate units. During the subsequent 2D forward Thrustpack kinematic modelling of the regional transect, these AFT data-set has been used, together with available subsurface information, to reconstruct the past architecture of the structural sections through time, accounting for incremental deformation along the various decollement levels, synorogenic sedimentation and erosion, as well as for successive bending and unbending episodes of the Arabian lithosphere.  相似文献   
214.
In the beginning of the 20th century, many streams in western Iowa were channelized to reduce flooding and to open swamp land to cultivation. Channel straightening accomplished its goal. However, it resulted in greater streamflow velocities, causing stream channels to degrade. This degradation has resulted in significant loss of land and damage to transportation and communications infrastructure in western Iowa and in several states in the United States. Baumel et al. (1994; Impact of Degrading Western Iowa Streams on Private and Public Infrastructure Costs. Final Report Iowa DOT HR-352, Stream Stabilization in Western Iowa) estimated the historical cost of this degradation on land loss and damage to transportation and communications infrastructure in western Iowa. The purpose of this paper is to extend the Baumel et al. analysis to estimate future degradation costs on 141 streams in western Iowa. It also presents two types of degradation cost estimates. One is a time neutral cost that does not consider the dates on which the degradation costs are incurred. The second is a time value cost which considers the dates on which the costs are incurred and then discounts these costs back to 1992 dollars. The time value costs are the more accurate estimates of the cost of future degradation in 1992 dollars and should be used to evaluate stream stabilization project proposals.  相似文献   
215.

The rainfall erosivity (R-factor in USLE) is the long-term average of the sum of the product of rainfall kinetic energy and its maximum 30-min intensity. Therefore, at most 30-min time intervals pluviograph records are required to calculate R-factor. But, such high-resolution data are scarce in many parts of the world and require lengthy processing period. In this study, R-factor was correlated with daily, monthly and annual rainfall, and its spatial variability in Eastern Ghats Highland of east India was mapped. The result showed that power regression models predicted satisfactorily the daily, monthly and annual R-factor, of which annual R-factor model performed best (model efficiency 0.93). Mean monsoon season R-factor was 15.6 and 10.0 times higher than the pre- and post-monsoon season R-factor, and thus remained highly critical with respect to erosion. Annual R-factor values ranged from 3040 to 10,127 MJ mm ha?1 h?1 year?1, with standard deviation of 1981 MJ mm ha?1 h?1 year?1. Rainfall intensity was positively correlated with erosivity density, and numerical value of rainfall intensity was almost double of the erosivity density value. The combination of rainfall and erosivity density was used to identify flood, erosion and landslide-prone areas. The developed iso-erosivity, erosivity density and risk maps can be opted as a tool for policy makers to take suitable measures against natural hazards in Eastern Ghats Highland of east India and elsewhere with similar rainfall characteristics.

  相似文献   
216.
Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty-one sampled springs emerge at faults (13 emerge at low-angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low-angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low-angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System - DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.  相似文献   
217.
The Neftegorsk, Sakhalin Island, earthquake of 27 May 1995   总被引:1,自引:0,他引:1  
Abstract Past seismic catastrophes were unknown in Sakhalin Island before 1995 except those suggested from findings of paleoseismodislocations. The first time that dwellers have experienced such a catastrophe in the Sakhalin Island history was on 27 May 1995. The devastating Neftegorsk earthquake occurred in Northern Sakhalin (?= 52.8° north; δ= 143.2° east; H = 18 km; Ms= 7.2), killed almost 2000 people in the small city of Neftegorsk, caused damage and destruction of buildings, bridges, railways and roads, breakage of oil and gas pipelines, electric and communication lines, and was accompanied by large-scale surface phenomena within a source area. It was felt all over the Sakhalin Island, as well as over the closest part of the Eurasian continent. Surface fracturing was the most impressive effect of the Neftegorsk earthquake. The 37-km long, right-lateral strike-slip fault, with a strike of north 15° east and a horizontal displacement up to a maximum of 8 m, has been observed from Taxon Mountain at the south to the junction of the Cadylanye and Keniga Rivers at the north. According to the results of a detailed geological survey and study of the aftershocks, the total extent of the source area was - 80 km. Various secondary phenomena have been observed at the Earth's surface, such as landslides, falls, soil liquefaction, mud volcanoes etc. The earthquake was followed by hundreds of aftershocks within the following 1-2 months. Spatially, the earthquake fault coincides with the pre-existing Upper Piltun fault, known earlier from geological studies. Recent high activity of the latter fault has been recognized only after the Neftegorsk event because of findings of traces of significant past dislocations within the fault zone. From a tectonic viewpoint it can be suggested that the Upper Piltun fault is a Riedel-type shear fracture located between two main regional faults: the Gyrgylanye-Dagy fault at the west and the Piltun-Ekhaby fault at the east. Therefore, its present activity, expressed by the destructive Neftegorsk earthquake, seems to be explained by a long strain accumulation within a broad zone of regional right-lateral shear faulting.  相似文献   
218.
219.
Despite its location in the rain shadow of the southern Sierra Nevada, the Panamint Range hosts a complex mountain groundwater system supporting numerous springs which have cultural, historical, and ecological importance. The sources of recharge that support these quintessential desert springs remain poorly quantified since very little hydrogeological research has been completed in the Panamint Range. Here we address the following questions: (i) what is the primary source of recharge that supports springs in the Panamint Range (snowmelt or rainfall), (ii) where is the recharge occurring (mountain-block, mountain-front, or mountain-system) and (iii) how much recharge occurs in the Panamint Range? We answer questions (i) and (ii) using stable isotopes measured in spring waters and precipitation, and question (iii) using a chloride mass-balance approach which is compared to a derivation of the Maxey–Eakin equation. Our dataset of the stable isotopic composition (δ18O and δ2H) of precipitation is short (1.5 years), but analyses on spring water samples indicate that high-elevation snowmelt is the dominant source of recharge for these springs, accounting for 57 (±9) to 79 (±12) percent of recharge. Recharge from rainfall is small but not insignificant. Mountain-block recharge is the dominant recharge mechanism. However, two basin springs emerging along the western mountain-front of the Panamint Range in Panamint Valley appear to be supported by mountain-front and mountain-system recharge, while Tule Spring (a basin spring emerging at the terminus of the bajada on the eastern side of the Panamint Range) appears to be supported by mountain-front recharge. Calculated recharge rates range from 19 mm year−1 (elevations < 1000 mrsl) to 388 mm year−1 (elevations > 1000 mrsl). The average annual recharge is approximately 91 mm year−1 (equivalent to 19.4 percent of total annual precipitation). We infer that the springs in the Panamint Range (and their associated ecosystems) are extremely vulnerable to changes in snow cover associated with climate change. They are heavily dependent on snowmelt recharge from a relatively thin annual snowpack. These findings have important implications for the vulnerability of desert springs worldwide.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号