首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
测绘学   2篇
大气科学   1篇
地球物理   26篇
地质学   47篇
海洋学   2篇
天文学   32篇
自然地理   3篇
  2024年   1篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1959年   1篇
  1947年   2篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
91.
An estimated 76% of global stream area is occupied by channels with widths above 30 m. Sentinel-2 imagery with resolutions of 10 m could supply information about the composition of river corridors at national and global scales. Fuzzy classification models that infer sub-pixel composition could further be used to compensate for small channel widths imaged at 10 m of spatial resolution. A major challenge to this approach is the acquisition of suitable training data useable in machine learning models that can predict land-cover type information from image radiance values. In this contribution, we present a method which combines unmanned aerial vehicles (UAVs) and Sentinel-2 imagery in order to develop a fuzzy classification approach capable of large-scale investigations. Our approach uses hyperspatial UAV imagery in order to derive high-resolution class information that can be used to train fuzzy classification models for Sentinel-2 data where all bands are super-resolved to a spatial resolution of 10 m. We use a multi-temporal UAV dataset covering an area of 5.25 km2. Using a novel convolutional neural network (CNN) classifier, we predict sub-pixel membership for Sentinel-2 pixels in the fluvial corridor as divided into classes of water, vegetation and dry sediment. Our CNN model can predict fuzzy class memberships with median errors from −5% to +3% and mean absolute errors from 10% to 20%. We also show that our CNN fuzzy predictor can be used to predict crisp classes with accuracies from 95.5% to 99.9%. Finally, we use an example to show how a fuzzy CNN model trained with localized UAV data can be applied to longer channel reaches and detect new vegetation growth. We therefore argue that the novel use of UAVs as field validation tools for freely available satellite data can bridge the scale gap between local and regional fluvial studies. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
92.
Measurement of riverbed material grain sizes is now a routine part of fieldwork in fluvial geomorphology and lotic ecology. In the last decade, several authors have proposed remote sensing approaches of grain size measurements based on terrestrial and aerial imagery. Given the current rise of small unmanned aerial system (sUAS) applications in geomorphology, there is now increasing interest in the application of these remotely sensed grain size mapping methods to sUAS imagery. However, success in this area has been limited owing to two fundamental problems: lack of constraint of image scale for sUAS imagery and blurring effects in sUAS images and resulting orthomosaics. In this work, we solve the former by showing that SfM‐photogrammetry can be used in a direct georeferencing (DG) workflow (i.e. with no ground validation) in order to predict image scale within margins of 3%. We then propose a novel approach of robotic photosieving of dry exposed riverbed grains that relies on near‐ground images acquired from a low‐cost sUAS and which does not require the presence of ground control points or visible scale objects. We demonstrate that this absence of scale objects does not affect photosieving outputs thus resulting in a low‐cost and efficient sampling method for surficial grains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
93.
94.
Sites with a limited overburden over a stiff basement are of particular relevance for seismic site response. The characterization of such stratigraphies by means of surface wave methods poses some difficulties in interpretation. Indeed the presence of sharp seismic contrasts between the sediments and the shallow bedrock is likely to cause a relevance of higher modes in the surface wave apparent dispersion curve, which must be properly taken into account in order to provide reliable results. In this study a Monte Carlo algorithm based on a multimodal misfit function has been used for the inversion of experimental dispersion curves. Case histories related to the characterization of stations of the Italian accelerometric network are reported. Spectral ratios and amplification functions associated to each site are moreover evaluated to provide an independent benchmark test. The results show the robustness of the inversion method in such non-trivial conditions and the possibility of getting an estimate of uncertainty related to solution non-uniqueness.  相似文献   
95.
Extensive observations of comet C/2004 Q2 (Machholz) were carried out between August 2004 and May 2005. The images obtained were used to investigate the comet’s inner coma features at resolutions between 350 and 1500 km/pixel.  相似文献   
96.
97.
98.
Garnet brought to the surface by late Miocene granitoids at La Galite Archipelago (Central Mediterranean, Tunisia) contains abundant primary melt and fluid inclusions. Microstructural observations and mineral chemistry define the host garnet as a peritectic phase produced by biotite incongruent melting at ~800 °C and 0.5 GPa, under fluid‐present conditions. The trapped melt is leucogranitic with an unexpected metaluminous and almost peralkaline character. Fluid inclusions are one phase at room temperature, and contain a CO2‐dominated fluid, with minor H2O, N2 and CH4. Siderite and an OH‐bearing phase were identified by Raman and IR spectroscopy within every analysed inclusion, and are interpreted as products of a post‐entrapment carbonation/hydration reaction between the fluid and the host during cooling. The fluid present during anatexis is therefore inferred to have been originally richer in both H2O and CO2. The production of anatectic melt with a metaluminous signature can be explained as the result of partial melting of relatively Al‐poor protoliths assisted by CO2‐rich fluids.  相似文献   
99.
The Le Castella marine terrace is the smallest and youngest terrace of the Crotone area (southern Italy), and formed after a rapid marine ingression due to a glacio-eustatic rise outpacing the regional uplift of the area. The most prominent feature of the terrace deposits is a seaward-accreting clinoform about 10 m thick, inferred to be formed during forced regressive conditions. This prograding body is mostly composed of bioclastic material, and shows an internal complexity consisting of alternating oblique and sigmoid elementary units inferred to be produced mainly by changes of accommodation development. Foreset avalancing was due to sediment accumulation by gravity-flow processes, while topsets were characterized by the migration of medium- to large-scale dunes showing a unimodal palaeocurrent pattern, oblique with respect to the dip direction of the large-scale clinoform foresets. The Le Castella clinoform starts to develop from a topographic step on the basement due to tectonics, which also controlled the palaeoshoreline trend.The recognized stratigraphic and facies architectures, the palaeocurrent pattern, and the inferred palaeogeographic setting during deposition, all suggest that the Le Castella clinoform is an example of spit system attached to the mainland and accreted due to longshore transport. The present example contributes to establish criteria allowing the recognition of ancient spit systems, which still are poorly known and rarely documented in the pre-Quaternary geological record.  相似文献   
100.
In recent years a number of missions have been conceived to acquire and track signals from GPS satellites at altitudes higher than the GPS constellation itself. The main purpose of SDR is to reduce the number of hardware components, projected for specific unmodifiable uses, and utilize general purpose units: on board CPU, DSP or FPGA. In this paper he study and design of a GNSS Software Receiver for space application, applied to a Lunar Mission, is presented with particular attention on Space Segment device and on Ground Facilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号