首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   18篇
  国内免费   4篇
测绘学   4篇
大气科学   39篇
地球物理   71篇
地质学   76篇
海洋学   36篇
天文学   29篇
综合类   2篇
自然地理   11篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   10篇
  2017年   7篇
  2016年   19篇
  2015年   13篇
  2014年   12篇
  2013年   17篇
  2012年   15篇
  2011年   19篇
  2010年   17篇
  2009年   18篇
  2008年   17篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   11篇
  2003年   5篇
  2002年   8篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1982年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   
106.
X-ray Computed Tomography (X-ray CT) has been used to study the petrophysical characteristics of a Jurassic sandstone from Asturias (Northern Spain) used as building stone in several monuments in the region. CT monitoring of water capillarity tests has made it possible to visualize the movement of water inside the samples, to relate this movement with texture characteristics, and to measure the height reached in successive images, thereby determining the capillary penetration coefficient; based on this coefficient, the effective capillary pore radius has also been estimated. An advantage of the use of CT is that, as the information comes from the sample interior, border effects that can be generated in the external faces can be avoided.The CT was also used to visualize how a commercial organosilicon consolidant penetrates inside the rock by means of capillarity, a usual way of consolidant application in stone restoration processes. The coefficient of capillary penetration of the product, determined on the basis of the measurements made on the tomographic images, is 53% less than that of water. The influence of rock texture characteristics on the capillarity both of the consolidant and the water was also observed.The samples underwent CT water capillarity studies before and after the consolidant application, proving that the treatment improves the rock's hydric properties. The coefficient of capillary penetration decreased by 24% following the application of the consolidant, whereas the effective pore radius decreased by more than 40%.  相似文献   
107.
The main aim of this work is to study the effect of scaling in the biosorption of chromium(VI) onto olive stone in two different fixed-bed columns. Firstly, the effect of flow rate, bed depth and inlet concentration of Cr(VI) in both columns was analyzed. The results revealed a better operation for lower flow rates, higher bed heights and lower inlet concentrations of metal. When decreasing flow rate, the operation time of the column increases. Therefore, as the solution flow rate increased the breakthrough and the exhaustion times decreased. An increase in bed depth increases the quantity of chromium eliminated and thus, the higher sorption capacity of the system. A decrease in the inlet concentration of chromium produces a delay in exhaustion time, and larger volumes of solution could be treated. The results were fitted to the BDST model, obtaining that the adsorptive capacity of the bed depth is similar in laboratory- and pilot-scale fixed-bed columns, considering the biosorption capacity as a biosorption-coupled reduction process. Results also could indicate that scaling affects more to the reduction process than properly biosorption process. The experimental data were also fitted to Adams–Bohart, Thomas, Yoon–Nelson and dose–response models. A good fit of the biosorption process of Cr(VI) was found for dose–response and Adams–Bohart models.  相似文献   
108.
Dendrogeomorphology has been used since the 1960s to estimate sheet erosion rates. To date, most efforts have focused on accurately determining the first year of root exposure. However, an adequate methodological approach that takes into consideration the microtopography of the ground surface when estimating sheet erosion rates using dendrogeomorphology has not been proposed. In this study, terrestrial laser scanning (TLS) was used for the first time to examine how changes in microtopography determine the level of certainty in estimates. To this end, highly accurate TLS‐based digital elevation models representing exposed roots and their immediate vicinity were analysed using geographic information system tools. The results indicate that erosion rates calculated using the standard dendrogeomorphic method have been underestimated by up to 29% because the method does not take into account changes to the microtopography caused by the axial and radial pressure of the roots. Another source of uncertainty, which we estimate to be 50%, was also found and is the result of changes in the ground surface microtopography caused by variations in soil roughness. These findings do not invalidate the usefulness of dendrogeomorphology for assessing soil erosion, although they do show the need for correct characterization of the microtopography to guarantee reliability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
109.
Miocene continental saltpans are scattered in the Central Valley of the Atacama Desert, one of the driest regions on Earth. These evaporitic deposits are hydrologically inactive, and are detached from groundwater brines or aquifers. The surface of the saltpans, also known as salars, comprises desiccation polygons, commonly with nodular salt structures along their sides. The morphology and bulk mineralogy of salt polygons differs between and within salars, and the shape and internal structure of salt nodules varies between different polygon types. Based on field observation, and mineralogy and crystallography data, we generated a conceptual model for the genesis and evolution of these surface features, whereby rare rainfall events are responsible for the transformation of desiccation salt polygons and the initial formation of salt nodules along polygon borders. In addition, frequent, but less intense, deliquescence events further drive the evolution of salt nodules, resulting in a characteristic internal structure that includes laminations, and changes in porosity and crystal morphologies. As a result, and despite the extreme dryness, the surfaces of fossil salars are dynamic on timescales of several years to decades, in response to daily cycles in atmospheric moisture, and also to rare and meager rainfall events. We propose that fossil salars in the Atacama Desert represent an end stage in the evolution of evaporitic deposits under extreme and prolonged dryness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
During the strong warm El Niño (EN) that occurred in 1997/98, Independence Bay (14°S, Peru) showed a ca. 10 °C increase in surface temperatures, higher oxygen concentrations, and clearer water due to decreased phytoplankton concentrations. Under these quasi-tropical conditions, many benthic species suffered (e.g. macroalgae, portunid crabs, and polychaetes) while others benefited (e.g. scallop, sea stars, and sea urchins). The most obvious change was the strong recruitment success and subsequent proliferation of the scallop Argopecten purpuratus, whose biomass increased fiftyfold. To understand these changes, steady-state models of the bay ecosystem trophic structure were constructed and compared for a normal upwelling year (1996) and during an EN (1998), and longer-term dynamics (1996–2003) were explored based on time series of catch and biomass using Ecopath with Ecosim (EwE) software. Model inputs were based on surveys and landings data collected by the Instituto del Mar del Perú (IMARPE). Results indicate that while ecosystem size (total throughput) is reduced by 18% during EN, mainly as a result of decreased total primary production, benthic biomass remains largely unchanged despite considerable shifts in the dominant benthic taxa (e.g. scallops replace polychaetes as secondary consumers). Under normal upwelling conditions, predation by snails and crabs utilize the production of their prey almost completely, resulting in more efficient energy flow to higher trophic levels than occurs during EN. However during EN, the proliferation of the scallop A. purpuratus combined with decreased phytoplankton increased the proportion of directly utilized primary production, while exports and flows to detritus are reduced. The simulations suggest that the main cause for the scallop outburst and for the reduction in crab and macroalgae biomass was a direct temperature effect, whereas other changes are partially explained by trophic interactions. The simulations suggest that bottom-up effects largely control the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号