首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   17篇
  国内免费   5篇
测绘学   12篇
大气科学   37篇
地球物理   153篇
地质学   114篇
海洋学   40篇
天文学   50篇
自然地理   16篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   14篇
  2016年   18篇
  2015年   17篇
  2014年   27篇
  2013年   33篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   42篇
  2008年   22篇
  2007年   14篇
  2006年   13篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   3篇
  1983年   4篇
  1981年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1958年   3篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
  1953年   2篇
  1952年   2篇
  1951年   3篇
  1950年   3篇
  1949年   1篇
  1948年   1篇
  1946年   2篇
  1945年   1篇
  1944年   3篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
221.
An integrated procedure for management of bridge networks in seismic areas   总被引:1,自引:1,他引:0  
In this work an integrated procedure for the evaluation of the seismic vulnerability of bridges included in the transportation network and a rational resource allocation for retrofitting with the aim of minimizing the consequences of an earthquake is shown at a network level. Both normal service and post-earthquake emergency conditions are considered as possible scenarios. The final result consists in global delay in the network versus seismic action occurring time. An iterative procedure finally defines the priority for optimal budget allocation for retrofitting. The procedure has been tested on a wide bridge network located in the North-eastern part of Italy.  相似文献   
222.
A new approach for the profiling of movable sediment beds in laboratory experiments is presented. It couples a triangulation laser sensor and an ultrasonic level transmitter, and allows a non‐intrusive, fast and accurate measurement of bed topography without stopping the experimental runs. The distortion of the laser beam due to the refraction at the water surface is corrected by contemporaneously measuring the elevation of the water surface through the ultrasonic level transmitter and taking advantage of geometrical relations involving the water depth, distance of the sensors from the water surface, and the angles that the emitted laser beam forms with the vertical before and after refraction. Several tests, under either still‐ or flowing‐water conditions, as well as increasing/decreasing water surface elevation, were carried out to evaluate the accuracy of the measurements. These tests indicate that good‐quality measurements are obtained for flow depths in the range 0 < D < 60 mm, typical of morphodynamic laboratory experiments. Finally, two relevant applications to movable bed experiments carried out under either lagoonal or fluvial conditions are presented that show the effectiveness of the proposed profiling technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
223.
The Gubbio basin in Central Italy is a intermountain basin of extensional tectonic origin, typical of Central and Southern Apennines, characterized by moderate seismicity. The strongest recorded event within the area is a magnitude 5.7 earthquake which occurred on 29 April 1984 along the Gubbio fault, bordering the eastern side of the basin. The main objective of this study is to analyze the features of earthquake ground motion as related to basin-edge effects, by performing physics-based numerical simulations of the 1984 earthquake through a high-performance spectral element code. The simulated ground motions are found in reasonable agreement with the recorded motions when using the kinematic source model developed by Ameri et al. (Bull Seismol Soc Am 99:647–663, 2009), with a rise-time equal to 1 s and a nucleation point located in the middle of the fault. Pronounced differences were noted between records from the basin and adjacent sites at outcropping bedrock, owing to both the strong impedance contrast between soft alluvial sites and bedrock formations (lithostratigraphic amplification), as well as lateral discontinuities related to the 2D/3D geometry of the basin (generation of surface waves). Since the fault was located beneath the basin, 1D amplification effects were found to be more relevant than those associated with the generation of surface waves from the basin edge. Finally, an envelope delay spectrum was computed for the simulated ground motions, showing that surface waves are excited in the frequency band of 0.2–0.8 Hz with a significant increase of ground motion duration within the basin.  相似文献   
224.
This paper investigates and compares the seismic performance of two types of innovative repairable fuse devices for earthquake resistant composite steel frames through experimental tests and numerical analyses. The fuses are energy dissipating devices consisting of steel plates that can be welded or bolted to the beam web and bottom flange. The numerical analyses performed in this study are based on the results of experimental tests carried out on beam-to-column sub-assemblages equipped with both the types of fuse devices. The main differences in terms of hysteretic behavior and failure modes of the fuses are identified through the experimental campaign. Detailed three-dimensional finite element models of the beam-to-column sub-assemblages are then created to provide a deeper insight into both the response and the effectiveness of the two investigated devices. On the basis of the results of both the experimental tests and numerical analyses, simplified models of different types of fuses are developed in order to study the effects of bolted and welded devices on the seismic response of composite steel frames. The results are then extended to the case of three-dimensional building structures with different number of storeys. The experimental and numerical investigations prove the effectiveness of the fuses and highlight the main differences between the two possible solutions.  相似文献   
225.
Based on our experience in the project REAKT, we present a methodological framework to evaluate the potential benefits and costs of using earthquake early warning (EEW) and operational earthquake forecasting (OEF) for real-time mitigation of seismic risk at nuclear facilities. We focus on evaluating the reliability, significance and usefulness of the aforementioned real-time risk-mitigation tools and on the communication of real-time earthquake information to end-users. We find that EEW and OEF have significant potential for the reduction of seismic risk at nuclear plants, although much scientific research and testing is still necessary to optimise their operation for these sensitive and highly-regulated facilities. While our test bed was Switzerland, the methodology presented here is of general interest to the community of EEW researchers and end-users and its scope is significantly beyond its specific application within REAKT.  相似文献   
226.
227.
Surface‐related multiple elimination is the leading methodology for surface multiple removal. This data‐driven approach can be extended to interbed multiple prediction at the expense of a huge increase of the computational burden. This cost makes model‐driven methods still attractive, especially for the three dimensional case. In this paper we present a methodology that extends Kirchhoff wavefield extrapolation to interbed multiple prediction. In Kirchhoff wavefield extrapolation for surface multiple prediction a single round trip to an interpreted reflector is added to the recorded data. Here we show that interbed multiples generated between two interpreted reflectors can be predicted by applying the Kirchhoff wavefield extrapolation operator twice. In the first extrapolation step Kirchhoff wavefield extrapolation propagates the data backward in time to simulate a round trip to the shallower reflector. In the second extrapolation step Kirchhoff wavefield extrapolation propagates the data forward in time to simulate a round trip to the deeper reflector. In the Kirchhoff extrapolation kernel we use asymptotic Green's functions. The prediction of multiples via Kirchhoff wavefield extrapolation is possibly sped up by computing the required traveltimes via a shifted hyperbola approximation. The effectiveness of the method is demonstrated by results on both synthetic and field data sets.  相似文献   
228.
Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L’Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L’Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.  相似文献   
229.
We discuss an approach to the component separation of microwave, multifrequency sky maps as those typically produced from cosmic microwave background (CMB) anisotropy data sets. The algorithm is based on the two-step, parametric, likelihood-based technique recently elaborated on by Eriksen et al., where the foreground spectral parameters are estimated prior to the actual separation of the components. In contrast with the previous approaches, we accomplish the former task with help of an analytically derived likelihood function for the spectral parameters, which, we show, yields estimates equal to the maximum likelihood values of the full multidimensional data problem. We then use these estimates to perform the second step via the standard, generalized-least-squares-like procedure. We demonstrate that the proposed approach is equivalent to a direct maximization of the full data likelihood, which is recast in a computationally tractable form. We use the corresponding curvature matrices to characterize statistical properties of the recovered parameters. We incorporate in the formalism some of the essential features of the CMB data sets, such as inhomogeneous pixel domain noise, unknown map offsets as well as calibration errors and study their consequences for the separation. We find that the calibration is likely to have a dominant effect on the precision of the spectral parameter determination for a realistic CMB experiment. We apply the algorithm to simulated data and discuss the results. Our focus is on partial sky, total intensity and polarization, CMB experiments such as planned balloon-borne and ground-based efforts, however, the techniques presented here should be also applicable to the full-sky data as for instance, those produced by the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite and anticipated from the Planck mission.  相似文献   
230.
In hierarchical models of structure formation, the time derivative of the halo mass function may be thought of as the difference of two terms – a creation term, which describes the increase in the number of haloes of mass m from mergers of less massive objects, and a destruction term, which describes the decrease in the number of m -haloes as these merge with other haloes, creating more massive haloes as a result. The first part of this paper focuses on estimating the distribution of times when these creation events take place. In models where haloes form from a spherical collapse, this distribution can be estimated from the same formalism which is used to estimate halo abundances: the constant-barrier excursion-set approach. In the excursion-set approach, moving rather than constant barriers are necessary for estimating halo abundances when the collapse is triaxial. First, we generalize the excursion-set estimate of the creation time distribution by incorporating ellipsoidal collapse. Then, we show that these moving barrier based predictions are in better agreement with measurements in numerical simulations than are the corresponding predictions of the spherical collapse model. In the second part of the paper, we link the creation time distribution to the creation term mentioned above. For this quantity, the improvement provided by the ellipsoidal collapse model is more evident. These results should be useful for studies of merger-driven star formation rates and active galactic nucleus activity. We also present a similar study of the creation of haloes conditioned on belonging to an object of a certain mass today, and reach similar conclusions – the moving barrier based estimates are in substantially better agreement with the simulations. This part of the study may be useful for understanding the tendency for the oldest stars to exist in the most massive objects, and for star formation to only occur in lower mass objects at late times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号