首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   21篇
地球物理   30篇
地质学   49篇
海洋学   13篇
天文学   23篇
自然地理   34篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   13篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   5篇
  1973年   6篇
  1966年   1篇
排序方式: 共有172条查询结果,搜索用时 703 毫秒
171.
Late-glacial and postglacial pollen stratigraphy and radiocarbon chronology of a marine core from the continental slope and a core from the western Olympic Peninsula, ca. 110 km apart, are compared. Divisible into four pollen assemblage zones (L, P-1, P-2, and P-3), the cores exhibit a succession of correlative zonal prominences: grass-sedge (L), pine (P-1), alder (P-1-P-2 boundary), and hemlock (P-3). Volcanic ash of Mt. Mazama provenance is also correlative in zone P-2. Quantitative relationships of the pollen in the cores (relative and absolute numbers and pollen influx) are dissimilar, however, and are attributed to the influence of the Columbia River pollen load reaching the locale of the continental slope core compared with the local pollen rain influencing the Olympic Peninsula core site.  相似文献   
172.
Extreme fractionation of minor and trace elements commonly accompanies very modest changes in major element concentrations in highly felsic igneous sequences. In such sequences, Si increases by only a few percent while, for example, Sr, Ba, Mg, and light rare earth elements decrease drastically, commonly by a factor of 10 or more. It has been argued, most notably by Hildreth (e.g. [1]), that such trends observed in tuffs were not induced by fractional crystallization (FC), but rather are a manifestation of compositional gradients in parental magma chambers which form via liquid-state thermogravitational diffusion (LSTD). The strongest arguments against FC are that (1) crystal settling is not a viable mechanism for crystal-liquid separation, and (2) extensive recrystallization is required to produce the observed trends, yet the tuffs are relatively crystal-poor. Many workers have noted trends in plutonic as well as volcanic rocks which are strikingly similar to those for which LSTD has been proposed, and some have concluded that LSTD was the fractionating mechanism.Several lines of evidence lead us to the conclusion that FC is the dominant differentiating process in high-silica magmas: (1) elemental trends are strikingly consistent with those predicted for FC; it would be a remarkable coincidence if diffusion-induced trends mimicked FC so closely; (2) large phenocryst assemblages in high-silica tuffs indicate low-variance liquid compositions that would be improbable if crystal-liquid equilibria were not controlling differentiation; (3) highly evolved plutonic rocks in many cases do not form the caps expected for LSTD, but rather occur in dikes and pods where they apparently segregated as late liquids; (4) recent experimental studies suggest that trends induced by diffusion differ drastically from observed felsic igneous trends.We do not believe that the principal arguments against FC in high-silica systems (unlikelihood of crystal settling; crystal-poor nature of tuffs) refute the reality of the chemical process, but rather emphasize the need for a better understanding of the physical mechanisms of crystal-liquid fractionation and eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号