首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   21篇
地球物理   30篇
地质学   49篇
海洋学   13篇
天文学   23篇
自然地理   34篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   13篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   5篇
  1973年   6篇
  1966年   1篇
排序方式: 共有172条查询结果,搜索用时 703 毫秒
11.
12.
Peter I Øy is located in the Bellinghausen Sea, 400 km NE of Thurston Island, West Antarctica. It is a Pleistocene volcanic island situated adjacent to a former tranform fault on the continental rise of the presently passive margin between the Pacific and Antarctica. New K-Ar age determinations ranging from 0.1 to 0.35 Ma show that the volcanism responsible for this island took place at the same time as post-subduction, rift-related volcanism occurred in the nearby Marie Byrd Land and the Antarctic Peninsula. The rocks of the island are alkalic basalt and hawaiite, benmoreite and trachyte. The basic tocks typically contain phenocrysts of olivine (Fo61–84), diopsidic augite, and plagioclase (ca. An60). Small xenoliths are present and consist of mantle-type spinel lherzolite, cumulate clinopyroxenite and gabbro and felsic inclusions that consist of medium-grained strained quartz, plagioclase, and abundant colorless glass. Chemically, the basic rocks are characterized by rather high MgO (7.8–10.2 wt.%) and TiO2 (3.1–3.7 wt.%) and relatively low CaO (8.4–9.5 wt.%) contents. They have steep REE patterns, [(La/Yb)N = 20] with HREE only 5 x chrondrite. Y and Sc are almost constant at relatively low levels. Compatible trace elements such as Ni and Cr show considerable variation (190–300 and 150–470 ppm, respectively.), whereas V shows only little variation. Sr and Nd isotope ratios vary slightly with 87Sr/86Sr averaging 0.70388 and 143Nd/144Nd 0.512782, both typical for ocean island volcanism. Lead isotope ratios are consistently high in basalts; 206Pb/204Pb = 19.194, 207Pb/204Pb = 15.728 and 208Pb/204Pb = 39.290, whereas benmoreïte is somewhat less radiogenic. Oxygen isotope analyses average δ18O = +6.0‰. Incompatible trace elements vary by a factor of 1.5–2.0 within the range of the basic rocks. It is proposed that the incompatible trace-element variations represent different degrees (<10%) of partial melting, and that these melts were later modified by minor (<15‰) olivine and spinel fractionation. The very small variation in Y (and Sc) and the very fractionated REE pattern indicate that the source had an Y- and HREE-rich residual phase, most probably garnet. Furthermore, it is suggested that the source was slightly hydrous and that melting took place at 18–20 kbar. Trachyte was derived by multiphase fractionation of ne-normative basalts, and benmoreite from hy-normative parental liquids. The rocks of Peter I Øy are generally of the same type and age as those outcropping in extensional regimes on the nearby continent, and therefore, these occurrences may be related to each other in some way. However, the Peter I Øy rocks are considerably more radiogenic in strontium and less radiogenic in neodymium than the rocks of the Antarctic Peninsula and Marie Byrd Land. Possible explanations are that Peter I Øy represent asthenospheric hot spot activity, or transtensional rifting as subduction ceased.  相似文献   
13.
Field relations, mineralogy and major and trace element data for the very felsic, peraluminous Sweetwater Wash pluton establish a differentiation sequence dominantly controlled by fractional crystallization processes. Elements Ba and Sr show depletion by factors of 50–60X from the earliest granite unit analyzed to the late-stage pegmatites and aplites. The strong Ba depletion is largely due to the partitioning behavior of this element in K-feldspar, while the Sr depletion is due to the combined effects of the two feldspars. The 4-fold increase in Rb during crystallization is also predictable from mineral/ melt partition coefficients.Coefficients for the light rare-earth elements (LREE) in major mineral species predict that these elements should behave incompatibly during crystallization and increase with fractionation. In fact, the LREE abundances decrease by a factor of 10–20X during crystallization. This anomalous behavior is commonly observed in felsic plutonic and volcanic sequences. In the Sweetwater Wash pluton monazite occurs in minute quantities, but it is sufficiently abundant to govern the partitioning of LREE and Th during crystallization. Petrographic observations indicate that monazite was on the liquidus throughout most of the crystallization. Analyses of silicate mineral separates suggest that the monazite contains more than 75% of the LREE in the whole rocks.Fractionation of REE-rich accessories (in particular monazite) from felsic magmas may be the general cause of REE depletion during differentiation of these melts. Monazite can easily be mistaken for zircon and, because it typically contains 50% LREE, extremely minute and easily overlooked quantities of monazite can control LREE abundances.  相似文献   
14.
Sediment shear Q from airgun OBS data   总被引:2,自引:0,他引:2  
  相似文献   
15.
16.
Pairwise waveform (PWW) and pairwise spectrogram (PWS) processors for 3-D localization of unknown, continuous-wave, broadband sources in shallow water have been developed and implemented. The processors use sparse hydrophone arrays and are applicable to multiple sources, which can be unknown, continuous wave, and broadband. Here, we give new formulas for these two processors that significantly reduce computational requirements, making localization at longer ranges and higher frequencies feasible. The new processors are motivated by a demonstration that an incoherent version of the PWW (IPWW) processor (in which processor outputs at different frequencies are averaged after being processed independently) is the Bartlett processor without autoreceiver terms. The new PWW processor is mathematically equivalent to the original version, though much faster. The new PWS processor is mathematically equivalent to the original version only in the limit of infinite spectrogram window length, but for window lengths that are optimal with the old PWS processor, the new PWS processor gives essentially the same results with much greater speed. Simulations comparing PWS processing to Bartlett, PWW processing, and a time difference of arrival method indicate that the main advantage of PWS processing is for multiple sources in uncertain, high-noise environments at ranges many wavelengths long. With PWS, increased robustness with respect to mismatch is obtained at the expense of reduced resolution; varying PWS processor parameters (such as the size of windows used to create spectrograms) optimizes this tradeoff. This work is motivated by the problem of localizing singing humpback whales, and simulation results use whale sources.  相似文献   
17.
18.
19.
Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.  相似文献   
20.
The Silver Creek caldera (southern Black Mountains, western Arizona) is the source of the 18.8 Ma, >700 km3 Peach Spring Tuff (PST) supereruption, the largest eruption generated in the Colorado River Extensional Corridor (CREC) of the southwestern United States. Within and immediately surrounding the caldera is a sequence of volcanics and intrusions ranging in age from ~19 to 17 Ma. These units offer a record of magmatic processes prior to, during, and immediately following the PST eruption. To investigate the thermal evolution of the magmatic center that produced the PST, we applied a combination of Ti-in-zircon thermometry, zircon saturation thermometry, and high-precision U–Pb CA–TIMS zircon dating to representative pre- and post-supereruption volcanic and intrusive units from the caldera and its environs. Similar to intracaldera PST zircons, zircons from a pre-PST trachytic lava (19 Ma) and a post-PST caldera intrusion (18.8 Ma) yield exceptionally high-Ti concentrations (most >20 ppm, some up to nearly 60 ppm), corresponding to calculated temperatures that exceed 900 °C. In these units, Ti-in-zircon temperatures typically surpass zircon saturation temperatures (ZSTs), suggesting the entrainment of zircon that had grown in hotter environments within the magmatic system. Titanium concentrations in younger volcanic and intrusive units (~18.7–17.5 Ma) decline through time, corresponding to an average cooling rate of 10?3.5 °C/year. The ~200 k.y. thermal peak evident at Silver Creek caldera is spatially limited: elsewhere in the Miocene record of the northern CREC, Ti-in-zircon concentrations and ZSTs are much lower, suggesting that felsic magmas were generally substantially cooler.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号