首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   8篇
地质学   7篇
海洋学   3篇
天文学   13篇
自然地理   4篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2000年   1篇
  1985年   1篇
  1875年   2篇
  1872年   1篇
  1871年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
Despite a keen awareness of climate change, northern Indigenous Peoples have had limited participation in climate-change science due to limited access, power imbalances, and differences in worldview. A western science emphasis on facts and an indigenous emphasis on relationships to spiritual and biophysical components indicate important but distinct contributions that each knowledge system can make. Indigenous communities are experiencing widespread thawing of permafrost and coastal erosion exacerbated by loss of protective sea ice. These climate-induced changes threaten village infrastructure, water supplies, health, and safety. Climate-induced habitat changes associated with loss of sea ice and with landscape drying and extensive wildfires interact with northern development to bring both economic opportunities and environmental impacts. A multi-pronged approach to broadening indigenous participation in climate-change research should: 1) engage communities in designing climate-change solutions; 2) create an environment of mutual respect for multiple ways of knowing; 3) directly assist communities in achieving their adaptation goals; 4) promote partnerships that foster effective climate solutions from both western and indigenous perspectives; and 5) foster regional and international networking to share climate solutions.  相似文献   
22.
Valley networks observed on the martian surface are found mostly on Noachian-aged highlands units, but a few occur on younger volcanic edifices. Enigmatically, they do not occur on all younger volcanoes of similar age or location. Using new data, we reanalyze the radially arrayed valleys on the flanks of Hecates Tholus, a Hesperian-aged shield volcano, and test the hypothesis that these valleys might have formed via basal melting of summit snowpack. We find that magmatic intrusions with reasonable geometries provide sufficient heat flux to cause basal melting of snowpack, with the resulting meltwater interpreted to be responsible for incision of the observed valleys. Valley morphology is similar to valleys observed adjacent to seasonally melting Antarctic Dry Valley glaciers formed on comparable slopes, supporting the hypothesis of a snowmelt origin. These relatively young valley networks are thus plausibly interpreted to form under circumstances in which summit snow accumulation was melted during one or more episodes of high localized heat flux.  相似文献   
23.
24.
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment and local human activities such as surface and ground water withdrawals, land use and energy extraction, and variability and long‐term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. Over time scales ranging from 1 week to 2 years, we find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation. Based on these relationships combined with regional climate projections, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate and chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
25.
We assessed the effectiveness of pulse flows in facilitating the upstream migration of an imperiled summer-run Chinook salmon (Oncorhynchus tshawytscha) stock in the Puntledge River, BC, Canada. During July and August, over 3 years, we tracked radio-tagged fish (n = 100) in a reach of the Puntledge River where water is diverted for power generation, resulting in stable low flows that are believed to impede migration. Over the course of  13 pulse flows, we measured migration rate, passage rate at natural barriers that are difficult to pass during low flows, movement away from the turbine outlet pool that creates distracting flows, and locomotor activity. Mean river flow during the peak of the pulses varied from 12.1 to 42.5 m3 s?1 and was at least 6.1 m3 s?1 above residual base flows. Typically, the pulse flows lasted 48 h. Migration rate was higher during some pulse flows, but results varied among pulses. Passage at natural barriers was only higher during an abnormal pulse where flows reached twice that of the prescribed flow (i.e., 24+ m3 s?1). Some fish moved away from the turbine outlet pool during pulse flows. Pulse flows did not affect fish activity levels, as measured by electromyogram telemetry. Although the effect of pulsed flows on the migration of the Puntledge River summer-run Chinook salmon was unclear, no negative impacts, such as hyperactivity or downstream displacement were observed. The use of pulse flows as a management tool still requires further research.  相似文献   
26.
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.  相似文献   
27.
Porosity and permeability in sediment mixtures   总被引:1,自引:1,他引:0  
Porosity in sediments that contain a mix of coarser- and finer-grained components varies as a function of the porosity and volume fraction of each component. We considered sediment mixtures representing poorly sorted sands and gravely sands. We expanded an existing fractional-packing model for porosity to represent mixtures in which finer grains approach the size of the pores that would exist among the coarser grains alone. The model well represents the porosity measured in laboratory experiments in which grain sizes and volume fractions were systematically changed within sediment mixtures. Permeability values were determined for these sediment mixtures using a model based on grain-size statistics and the expanded fractional-packing porosity model. The permeability model well represents permeability measured in laboratory experiments using air- and water-based permeametry on the model sediment mixtures.  相似文献   
28.
Caleb I. Fassett 《Icarus》2008,195(1):61-89
Valley networks, concentrations of dendritic channels that often suggest widespread pluvial and fluvial activity, have been cited as indicators that the climate of Mars differed significantly in the past from the present hyperarid cold desert conditions. Some researchers suggest that the change in climate was abrupt, while others favor a much more gradual transition. Thus, the precise timing of valley network formation is critical to understanding the climate history on Mars. We examine thirty valley network-incised regions on Mars, including both cratered upland valley networks and those outside the uplands, and apply a buffered crater counting technique to directly constrain when valley network formation occurred. The crater populations that we derive using this approach allow assessment of the timing of the last activity in a valley network independent of the mapping of specific geological units. From these measurements we find that valley networks cluster into two subdivisions in terms characteristics and age: (1) valley network activity in the cratered highlands has an average cessation age at the Noachian-Hesperian boundary and all valleys that we crater counted are Early Hesperian or older. No evidence is found for valley networks in the cratered uplands of Late Hesperian or Amazonian age. The timing of the cessation of cratered upland valley network activity at the Noachian-Hesperian boundary also corresponds to a decline in the intensity of large crater formation and degradation and to the apparent end of phyllosilicate-type weathering. (2) A few valley network-incised regions formed outside of the cratered uplands on volcanic edifices, in association with younger impact craters, and on the rim of Valles Marineris. We applied our buffered crater counting technique to four such valleys, on the volcanoes Ceraunius Tholus, Hecates Tholus, and Alba Patera and on the rim of Echus Chasma, and find that each has distinctive and different Late Hesperian or Early Amazonian ages, indicating that valley networks formed from time to time in the post-Noachian period. Unlike the cratered upland valley networks, these isolated occurrences are very local and have been interpreted to represent local conditions (e.g., snowpack melted during periods of intrusive volcanic activity). In contrast to a gradual cessation in the formation of valley networks proposed by some workers, our new buffered crater counting results indicate a relatively abrupt cessation in the formation of the widespread cratered upland valley networks at approximately the end of the Noachian, followed only by episodic and very localized valley network formation in later Mars history, very likely due to specific conditions (e.g., local magmatic heating). These valley network ages and correlations are thus consistent with a major change in the near-surface aqueous environment on Mars at approximately the Noachian-Hesperian boundary. The Noachian environment supported surface running water and fluvial erosion across Mars in the cratered uplands, enhanced crater degradation, and a weathering environment favoring the formation of phyllosilicates. The Hesperian-Amazonian environment was more similar to the hyperarid cold desert of today, with valley networks forming only extremely rarely and confined to localized special conditions. Sources of water for these latter occurrences are likely to be related to periodic mobilization and equatorward migration of polar volatiles due to variations in spin-axis orbital parameters, and to periodic catastrophic emergence of groundwater.  相似文献   
29.
Caleb I. Fassett 《Icarus》2008,198(1):37-56
A new catalog of 210 open-basin lakes (lakes with outlet valleys) fed by valley networks shows that they are widely distributed in the Noachian uplands of Mars. In order for an outlet valley to form, water must have ponded in the basin to at least the level of the outlet. We use this relationship and the present topography to directly estimate the minimum amount of water necessary to flood these basins in the past. The volumes derived for the largest lakes (∼3×104 to ∼2×105 km3) are comparable to the largest lakes and small seas on modern Earth, such as the Caspian Sea, Black Sea, and Lake Baikal. We determine a variety of other morphometric properties of these lakes and their catchments (lake area, mean depth, volume, shoreline development, outlet elevation, and watershed area). Most candidate lakes have volumes proportional to and commensurate with their watershed area, consistent with precipitation as their primary source. However, other lakes have volumes that are anomalously large relative to their watershed areas, implying that groundwater may have been important in their filling. Candidate groundwater-sourced lakes are generally concentrated in the Arabia Terra region but also include the Eridania basin [Irwin, R.P., Howard, A.D., Maxwell, T.A., 2004a. J. Geophys. Res. 109, doi: 10.1029/2004JE002287. E12009; Irwin, R.P., Watters, T.R., Howard, A.D. Zimbelman, J.R., 2004b. J. Geophys. Res. 109, doi: 10.1029/2004JE002248. E09011] and several lakes near the dichotomy boundary. This areal distribution is broadly consistent with where groundwater should have reached the surface as predicted by current models. Both surface runoff and groundwater flow appear to have been important sources for lakes and lake chains, suggesting a vertically integrated hydrological system, the absence of a global cryosphere, and direct communication between the surface and subsurface hydrosphere of early Mars.  相似文献   
30.
Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan, China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those reductions and the implications of doing so for CO2 emissions. We extend the analysis through 2050, and either hold emissions policy targets at the level specified in the Plan, or continue to reduce them gradually. We apply a computable general equilibrium model of the Chinese economy that includes a representation of pollution abatement derived from detailed assessment of abatement technology and costs. We find that China's SO2 and NOx emissions control targets would have substantial effects on CO2 emissions leading to emissions savings far beyond those we estimate would be needed to meet its CO2 intensity targets. However, the cost of achieving and maintaining the pollution targets can be quite high given the growing economy. In fact, we find that the near term pollution targets can be met while still expanding the use of coal, but if they are, then there is a lock-in effect that makes it more costly to maintain or further reduce emissions. That is, if firms were to look ahead to tighter targets, they would make different technology choices in the near term, largely turning away from increased use of coal immediately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号