首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36884篇
  免费   700篇
  国内免费   579篇
测绘学   933篇
大气科学   3066篇
地球物理   7400篇
地质学   12198篇
海洋学   3366篇
天文学   8693篇
综合类   120篇
自然地理   2387篇
  2021年   199篇
  2020年   257篇
  2019年   255篇
  2018年   611篇
  2017年   563篇
  2016年   878篇
  2015年   619篇
  2014年   846篇
  2013年   1883篇
  2012年   1032篇
  2011年   1449篇
  2010年   1190篇
  2009年   1771篇
  2008年   1569篇
  2007年   1491篇
  2006年   1406篇
  2005年   1284篇
  2004年   1208篇
  2003年   1166篇
  2002年   1090篇
  2001年   975篇
  2000年   984篇
  1999年   919篇
  1998年   834篇
  1997年   841篇
  1996年   720篇
  1995年   645篇
  1994年   561篇
  1993年   514篇
  1992年   510篇
  1991年   481篇
  1990年   476篇
  1989年   418篇
  1988年   403篇
  1987年   449篇
  1986年   434篇
  1985年   522篇
  1984年   582篇
  1983年   558篇
  1982年   519篇
  1981年   462篇
  1980年   435篇
  1979年   397篇
  1978年   412篇
  1977年   358篇
  1976年   323篇
  1975年   336篇
  1974年   336篇
  1973年   338篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
882.
Bearing capacity of rock over mined cavities in Nottingham   总被引:1,自引:0,他引:1  
A significant geohazard is created in Nottingham, UK, by hundreds of man-made caves cut in the weak sandstone beneath the city centre. Stability of the caves has been assessed by a single full-scale loading test, by numerical modelling with FLAC and by physical modelling in plaster. For typical caves 4 m wide, bearing capacity of the rock roof rises from 2 MPa where it is 1 m thick to 8 MPa where 3 m thick. Stability decreases over wider caves and where the loading pad edge is over the edge of the cave. Numerical modelling of a very wide cave revealed the failure mechanisms and also showed that an internal support wall increased roof bearing capacity by 50%. Local building regulations that require 3-5 m of rock cover over the sandstone caves appear to be conservative. In stronger rocks, including karstic limestone, a guideline that cover thickness exceeds 70% of the cave width appears to be appropriate.  相似文献   
883.
The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments.Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature.N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and δ13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.  相似文献   
884.
This study explores the fractionation of iron isotopes (57Fe/54Fe) in an organic-rich mudstone succession, focusing on core and outcrop material sampled from the Upper Jurassic Kimmeridge Clay Formation type locality in south Dorset, UK. The organic-rich environments recorded by the succession provide an excellent setting for an investigation of the mechanisms by which iron isotopes are partitioned among mineral phases during biogeochemical sedimentary processes.Two main types of iron-bearing assemblage are defined in the core material: mudstones with calcite ± pyrite ± siderite mineralogy, and ferroan dolomite (dolostone) bands. A cyclic data distribution is apparent, which reflects variations in isotopic composition from a lower range of δ57Fe values associated with the pyrite/siderite mudstone samples to the generally higher values of the adjacent dolostone samples. Most pyrite/siderite mudstones vary between −0.4 and 0.1‰ while dolostones range between −0.1 and 0.5‰, although in very organic-rich shale samples below 360 m core depth higher δ57Fe values are noted. Pyrite nodules and pyritized ammonites from the type exposure yield δ57Fe values of −0.3 to −0.45‰. A fractionation model consistent with the δ57Fe variations relates the lower δ57Fe pyrite and siderite ± pyrite mudstones values to the production of isotopically depleted Fe(II) during biogenic reduction of the isotopically heavier lithogenic Fe(III) oxides. A consequence of this reductive dissolution is that a 57Fe-enriched iron species must be produced that potentially becomes available for the formation of the higher δ57Fe dolostones. An isotopic profile across a dolostone band reveals distinct zonal variations in δ57Fe, characterized by two peaks, respectively located above and below the central part of the band, and decoupling of the isotopic composition from the iron content. This form of isotopic zoning is shown to be consistent with a one-dimensional model of diffusional-chromatographic Fe-isotope exchange between dolomite and isotopically enriched pore water. An alternative mechanism envisages the infiltration of dissolved ferrous iron from variable (high and low) δ57Fe sources during coprecipitation of Fe(II) ion with dolomite. The study provides clear evidence that iron isotopes are cycled during the formation and diagenesis of organic carbon-rich sediments.  相似文献   
885.
By using accelerator mass spectrometry we have measured the 10Be concentrations of 86 Australasian tektites. Corrected to the time of tektite production ∼0.8 My ago, the 10Be concentrations (106 atom/g) range from 59 for a layered tektite from Huai Sai, Thailand, to 280 for an australite from New South Wales, Australia. The average value is 143 ± 50. When tektites are sorted by country, their average measured 10Be concentrations increase slowly with increasing distance from Southeast Asia, the probable location of the tektite producing event, from 59 ± 9 for 6 layered tektites from Laos to 136 ± 20 for 20 splash-form tektites from Australia. The lowest 10Be concentrations for tektites fall on or within a contour centered off the shore of Vietnam, south of the Gulf of Tonkin (107°E; 17°N), but also encompassing two other locations in the area of northeastern Thailand previously proposed for the site of a single tektite-producing impact. The 10Be concentrations of layered tektites show only a weak anticorrelation (R ∼ −0.3) with the numbers of relict crystalline inclusions.Loosely consolidated, fine-grained terrestrial sediments or recently consolidated sedimentary rocks are the most likely precursor materials. Dilution of sediments with other kinds of rock raises problems in mixing and is not supported by petrographic data. Sedimentary columns that have the right range of 10Be concentrations occur off the coasts of places where sedimentation rates are high relative to those in the deep sea. A single impact into such a region, 15 to 300 m thick, could have propelled near-surface, high-10Be material farthest—to Australia—while keeping the deeper-lying, low-10Be layers closer to home. We do not rule out, however, other proposed mechanisms for tektite formation.  相似文献   
886.
Pamukkale thermal waters (35 °C), exhibiting calcium-bicarbonate-sulfate composition and high carbon dioxide concentration, are of a predominantly meteoric origin. The meteoric fluid, circulating through faults and fractures, is heated by magmatic intrusions at great depth, and ascends from deep reservoirs to the surface. Mixing with relatively cold groundwater in the near surface zone promotes different saturation conditions with respect to calcium carbonate that later precipitates at depth and/or the surface. Dissolution-deposition processes of calcium carbonate both at surface and depth environments may help to reconstruct past climate direction in the field. During wet climate conditions a high-rate of calcium carbonate accumulation would be expected to occur at the surface because thermal fluid would be under-saturated with respect to calcium carbonate at depth because of a relatively higher mixing ratio with cold groundwater. During dry climate conditions the thermal fluid would be super-saturated at depth because of the highly acidic environment. Hydrometeorological studies reveal that the annual precipitation at the Pamukkale hydrothermal field tends to decrease with time. This climatic change in the area was also detected from geological records. While humid climate conditions prevailed during the late Quaternary, the area has recently been affected by arid/semi-arid climate conditions, followed by some episodic transitions. This study has shown how the system has possibly reacted to different climate conditions since antiquity.  相似文献   
887.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   
888.
The fault-bounded Bolívar Ultramafic Complex (BUC) onthe eastern fringes of the Western Cordillera of Colombia wastectonically accreted onto the western coast of South Americain the late Cretaceous–early Tertiary, along with pillowbasalts of the Caribbean–Colombian Oceanic Plateau (CCOP).The complex consists of a lower sequence of ultramafic cumulates,successively overlain by layered and isotropic gabbroic rocks.The gabbros grade into, and are intruded by, mafic pegmatitesthat consist of large magnesiohornblende and plagioclase crystals.These pegmatites yield a weighted mean 40Ar–39Ar step-heatingage of 90·5 ± 0·9 Ma and thus coincidewith the timing of peak CCOP volcanism. The chemistry of theBUC is not consistent with a subduction-related origin. However,the similarity in Sr–Nd–Pb–Hf isotopes betweenthe CCOP and the BUC, in conjunction with their indistinguishableages, suggests that the BUC is an integral part of the plume-derivedCCOP. The parental magmas of the Bolívar complex wereprobably hydrous picrites that underwent 20–30% crystallization.The residual magmas from this fractionation contained  相似文献   
889.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号