首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   3篇
  国内免费   2篇
测绘学   12篇
大气科学   11篇
地球物理   15篇
地质学   34篇
海洋学   8篇
天文学   4篇
自然地理   12篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有96条查询结果,搜索用时 343 毫秒
31.
We studied sediment cores from four Florida (USA) lakes that have received groundwater hydrologic supplements (augmentation) for >30 years to maintain lake stage. Top samples (0–4 cm) from sediment cores taken in Lakes Charles, Saddleback, Little Hobbs, and Crystal had 226Ra activities of 44.9, 17.5, 7.6, and 8.5 dpm g−1, respectively, about an order of magnitude greater than values in deeper, older deposits. The surface sample from Lake Charles yielded the highest 226Ra activity yet reported from a Florida lake core. Several lines of evidence suggest that groundwater augmentation is responsible for the high 226Ra activities in recent sediments: (1) 226Ra activity in cores increased recently, (2) the Charles, Crystal, and Saddleback cores display 226Ra/210Pb disequilibrium at several shallow depths, suggesting 226Ra entered the lakes in dissolved form, (3) cores show recent increases in Ca, which, like 226Ra, is abundant in augmentation groundwater, and (4) greater Sr concentrations are associated with higher 226Ra activities in recent Charles and Saddleback sediments. Sr concentrations in Eocene limestones of the deep Floridan Aquifer are high relative to Sr concentrations in surficial quartz sands around the lakes. Historical water quality inferences for the lakes were based on diatom assemblages in sediments. Recent alkalization in Lakes Charles, Saddleback, Little Hobbs, and Crystal was inferred from weighted-averaging calibration (WACALIB). The lakes also show recent trophic state increases based on WACALIB-derived estimates for limnetic total P. Although residential and agricultural sources might contribute to increased P loading, P in augmentation waters probably has had significant influence on eutrophication. Dystrophic diatoms were abundant in the early history of Lakes Saddleback, Little Hobbs, and Crystal, which suggests that these lakes contained more tannic waters during the past than at present, perhaps as a consequence of greater inflows from surrounding wetlands. Ionic content of lake waters increased, as indicated by diatom autecological analysis. Recent geochemical and biological changes detected in cores from these lakes probably are a result of deliberate groundwater augmentation, although inputs of groundwater pumped for agricultural and residential development in the watersheds also might have contributed to limnological changes.  相似文献   
32.
The U.S. Geological Survey has conducted geochemical studies in the Indian Pass (CDCA-355), 124 km2, and Picacho Peak (CDCA-355A), 23 km2, Wilderness Study Areas (WSA's) as part of a program to evaluate the mineral resource potential of designated areas in the California Desert Conservation Area. These two WSA's are of particular interest because they lie within a region which has intermittently produced significant quantities of Au since the mid-1800's, and is currently the site of much exploration activity for additional Au resources. Within a 15-km radius of the WSA's, there is one actively producing gold mine, a major deposit which began production in 1986, and one recently announced discovery. In the reconnaissance geochemical surveys of the two WSA's - 177 μm (-80 mesh) stream sediments, heavy-mineral concentrates from stream sediments, and rocks were prepared and analyzed.Four areas of possible exploration interest were identified within the WSA's. The first area is characterized by anomalous W and Bi in nonmagnetic heavy-mineral concentrates, and is underlain primarily by the Mesozoic Orocopia Schist which has been intruded by monzogranite of Oligocene age. Alteration and mineralization appear to be localized near the intrusive contact. The mineralized rock at the surface contains secondary Cu and Fe minerals where the monzogranite intrudes the metabasite horizons of the Orocopia Schist and scheelite where the monzogranite intrudes marble within the Orocopia Schist.The second area is characterized by anomalous As, Sb, Ba, B, and Sr in nonmagnetic heavy-mineral concentrates and by anomalous As in - 177 μm stream sediments. Geologically, this area is underlain by metasedimentary and metavolcanic rocks of Jurassic(?) age; a biotite monzogranite of Jurassic(?) age; and Tertiary volcanic and hypabyssal rocks composed of flows, domes, and tuffs of intermediate to silicic composition. All these rock types are cut by a set of north-south-striking normal faults. The anomalies in the heavy-mineral concentrates are believed to be related to silica-clay alteration observed in the vicinity of some of these faults.  相似文献   
33.
Long JF  Mcmillen DB 《Climatic change》1987,11(1-2):141-177
Population projections methods of the U.S. Census Bureau draw upon several different traditions of forecasting: demographic accounting, judgmental, time series, deterministic, and explanatory. This paper reviews each of the forecasting traditions in population projections, describes the U.S. Census Bureau's current methods for national and state population projections, and proposes new hybrid approaches such as demographic-time series methods for national fertility projections and economic-demographic methods for state migration projections. Throughout the article, possible parallels with forecasting in other disciplines are noted.  相似文献   
34.
35.
The development of a cDNA array of coral genes and its application to investigate changes in coral gene expression associated with stressful conditions is described. The array includes both well-characterized and previously unidentified coral genes from Acropora cervicornis and Montastraea faveolata. Corals were exposed to either natural or anthropogenic stressors to elicit the expression of stress genes for isolation and incorporation onto the array. A total of 32 genes involved in protein synthesis, apoptosis, cell signaling, metabolism, cellular defense and inflammation were included on the array. Labeled cDNA from coral (Montastraea faveolata) exposed to elevated seawater temperature, salinity and ultraviolet light was tested against the microarray to determine patterns of gene expression associated with each stressor. Carbonic anhydrase, thioredoxin, a urokinase plasminogen activator receptor (uPAR) and three ribosomal genes demonstrated differential expression across all replicates on the array and between replicate colonies. Specific gene expression patterns produced in response to different stressors demonstrate the potential for gene expression profiling in characterizing the coral stress response.  相似文献   
36.
37.
An earlier paper by this writer presented a method for combining distribution data for float-sink coal-cleaning devices into a single, generalized distribution curve which is independent of the specific gravity of separation. A nonlinear exponential-type equation was used to represent each of the curves and to determine the corresponding generalized probable error. Performance data for five common coal-cleaning devices were analyzed using this method.In this paper the method is applied to another common coal-cleaning device — the sand cone. Numerical values are presented for the constants in the exponential-type generalized distribution equation and for the corresponding generalized probable error. Several different feed size-fractions are considered.  相似文献   
38.
Despite its location in the rain shadow of the southern Sierra Nevada, the Panamint Range hosts a complex mountain groundwater system supporting numerous springs which have cultural, historical, and ecological importance. The sources of recharge that support these quintessential desert springs remain poorly quantified since very little hydrogeological research has been completed in the Panamint Range. Here we address the following questions: (i) what is the primary source of recharge that supports springs in the Panamint Range (snowmelt or rainfall), (ii) where is the recharge occurring (mountain-block, mountain-front, or mountain-system) and (iii) how much recharge occurs in the Panamint Range? We answer questions (i) and (ii) using stable isotopes measured in spring waters and precipitation, and question (iii) using a chloride mass-balance approach which is compared to a derivation of the Maxey–Eakin equation. Our dataset of the stable isotopic composition (δ18O and δ2H) of precipitation is short (1.5 years), but analyses on spring water samples indicate that high-elevation snowmelt is the dominant source of recharge for these springs, accounting for 57 (±9) to 79 (±12) percent of recharge. Recharge from rainfall is small but not insignificant. Mountain-block recharge is the dominant recharge mechanism. However, two basin springs emerging along the western mountain-front of the Panamint Range in Panamint Valley appear to be supported by mountain-front and mountain-system recharge, while Tule Spring (a basin spring emerging at the terminus of the bajada on the eastern side of the Panamint Range) appears to be supported by mountain-front recharge. Calculated recharge rates range from 19 mm year−1 (elevations < 1000 mrsl) to 388 mm year−1 (elevations > 1000 mrsl). The average annual recharge is approximately 91 mm year−1 (equivalent to 19.4 percent of total annual precipitation). We infer that the springs in the Panamint Range (and their associated ecosystems) are extremely vulnerable to changes in snow cover associated with climate change. They are heavily dependent on snowmelt recharge from a relatively thin annual snowpack. These findings have important implications for the vulnerability of desert springs worldwide.  相似文献   
39.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
40.
Little is known regarding hormone export from tile‐drained agricultural fields despite the widespread presence of tile drains in the Midwestern United States. By intensively measuring water flow rates and hormone concentrations in four subsurface tile drains and three receiving ditches at a working Midwest farm, hormone fluxes and loads from the tile‐drained fields were quantified. Before and during the 17‐month study period (January 2009 – May 2010), the associated farm fields received various animal waste applications (beef, dairy, poultry, sheep, and swine). Hormones monitored included the estrogens17β‐ and 17α‐estradiol, estrone, and estriol; the natural androgens testosterone, and androstenedione; and the synthetic androgens 17β‐ and 17α‐trenbolone, and trendione. Hormone loads measured in the ditches for three drainage areas during the entire 17‐month study period were in ranges of 16–58 mg/ha for total estrogens, 6.8–19 mg/ha for natural androgens, and 4.2–44 mg/ha for synthetic androgens. Because higher hormone concentrations generally occurred during discrete periods of increased flow, high flow rates often were associated with a disproportionately high hormone flux. For example, 80% of total estrogens and natural androgens exported into the ditches occurred during only 9–26% of the study period, coinciding with the most significant storm events. In addition, hormone fluxes were highest during storm events that occurred shortly after animal waste applications. Therefore, to effectively reduce hormone loads exported to downstream aquatic ecosystems in the absence of any application reduction, the short periods during which high‐flow events occur must be targeted. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号